Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In the present study, Ti6Al4V titanium alloy plates were joined using robotic fiber laser welding method. Pre- and post-weld heat treatments were applied to laser welded joints. After welding stress relieving, solution heat treatment and ageing were also applied to preheated laser welded samples. Effects of heat treatment conditions on microstructural characteristics and mechanical properties of robotic fiber laser welded joints were studied. Aged samples were found to be made of coarsened grains compared to microstructures of non-aged samples. There were increases in ductility and impact toughness of samples applied to ageing increased, while hardness and tensile strength of non-aged samples were higher. The highest value for tensile strength and for impact toughness in welded samples have been identified as 840 MPa and 27 J, respectively. Fractures in tensile test samples and base metal impact test samples took place in the form of ductile fracture, while laser welded impact test samples had fractures in the mode of intergranular fractures with either a quasi-cleavage type or tear ridges. EDS analysis carried out for all heat treatment conditions and welding parameters demonstrated that major element losses were not observed in base metal, HAZ and weld metal.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1225--1233
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
- Gaziosmanpaşa University, Department of Mechanical Engineering, Faculty of Natural Sciences and Engineering, Tokat, 60150, Turkey
autor
- Gaziosmanpaşa University, Department of Mechatronics Engineeringtokat, Graduate School of Natural and Applied Sciences, 60150, Turkey
Bibliografia
- [1] M. J. Donachie, Titanium: A Technical Guide, ASM International, Materials Park, Ohio (2000).
- [2] F. Karimzadeh, M. Heidarbeigy, A. Saatchi, J. Mater. Process. Technol. 206 (1-3), 388-394 (2008).
- [3] N. Kahraman, Mater. Des. 28 (2), 420-427 (2007).
- [4] N. Kahraman, B. Gülenç, F. Fındık, J. Mater. Process. Technol. 169 (2), 127-133 (2005).
- [5] A. Yıldız, Y. Kaya, N. Kahraman, Int. J. Adv. Manuf. Technol. 86 (5), 1287-1298 (2016).
- [6] E. Akman, A. Demir, T. Canel, T. Sınmazçelik, J. Mater. Process. Technol. 209 (8), 3705-3713 (2009).
- [7] X. Cao, M. Jahazi, Opt. Lasers. Eng. 47 (11), 1231-1241 (2009).
- [8] A. S. H. Kabir, X. Cao, J. Gholipour, P. Wanjara, J. Cuddy, A. Birur, M. Medraj, Metall. and Mat. Trans. A 43 (11), 4171-4184 (2012).
- [9] C. Köse, R. Kaçar, Mater. Des. 64, 221-226 (2014).
- [10] C. Köse, R. Kaçar, Mater. Test. 54 (10), 779-785 (2014).
- [11] C. Köse, R. Kaçar, J. Fac. Eng. Archit. Gaz. 3 (2), 225-235 (2015).
- [12] C. Köse, R. Kaçar, A. P. Zorba, M. Bağırova, A. M. Allahverdiyev, Mater. Sci. Eng. C 60, 211-218 (2016).
- [13] C. Köse, R. Kaçar, Int. J. Electrochem. Sci. 11 (3), 2762-2777 (2016).
- [14] C. Köse, Int. J. Electrochem. Sci. 11 (4), 3542-3554 (2016).
- [15] C. Köse, Mater. Test. 58 (11-12), 963-969 (2016).
- [16] M. Taskin, U. Caligulu, M. Turkmen, Mater. Test. 53 (11-12), 741-747 (2011).
- [17] L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar, C. J. Kong, Mater. Des. 28, 1231-1237 (2007).
- [18] K. K. Murthy, S. Sundaresan, J. Mater. Sci. 33 (3), 817-826 (1998).
- [19] Y. Liu, S. Tang, G. Liu, Y. Sun, J. Hu, Int. J. Electrochem. Sci. 11 (11), 10561-10580 (2016).
- [20] G. Thomas, V. Ramachandra, R. Ganeshan, R. Vasudevan, J. Mater. Sci. 28 (18), 4892-4899 (1993).
- [21] S. Sundaresan, G. D. J. Ram, Sci. Technol. Weld. Joi. 4 (3), 151-160 (1999).
- [22] T. Mohandas, M. Sirinivas, V. V. Kutumba Rao, Fatigue Fract. Eng. Mater. Struct. 23 (1), 33-38 (2000).
- [23] T. Mohandas, D. Banerjee, V. V. Kutumba Rao, Metall. and Mat. Trans. A. 30 (13), 789-798 (1999).
- [24] V. A. Kumar, R. K. Gupta, S. K. Manwatkar, P. Ramkumar, P. V. Venkitakrishnan, J. Mater. Eng. Perform. 25 (6), 2147-2156 (2016).
- [25] N. K. Babu, S. G. S. Raman, C. V.S. Murthy, G. Madhusudhan Reddy, Mat. Sci. Eng. A 471 (1-2), 113-119 (2007).
- [26] C. Köse, E. Karaca, Metals. 7 (6), 221 (2017).
- [27] L. W. Tsay, C. Y. Tsay, In. J. Fatigue. 19 (10), 713-720 (1997).
- [28] J. Huez, C. Buiriette, E. Andrieu, S. Perusin, S. Audion, Mater. Sci. Forum. 654-656, 890-893 (2010).
- [29] Y. Zhang, Y. S. Sato, H. Kokawa, S. H. C. Park, S. Hirano, Mat. Sci. Eng. A 485 (1-2), 448-455 (2008).
- [30] S. H. Wang, M. D. Wei, L. W. Tsay, Mater. Lett. 57 (12), 1815-1823 (2003).
- [31] T. Mohandas, D. Banerjee, V .V. K. Rao, Mat. Sci. Eng. A 289 (1), 70-82 (2000).
- [32] C. Köse, E. Karaca, Effect of solution and ageing heat treatments on the microhardness and impact toughness properties of fiber laser welded Ti-6Al-4V alloy, 8th International Advanced Technologies Symposium (IATS’17), Turkey (2016).
- [33] J. L. Barreda, F. Santamaria, X. Azpiroz, A. M. Irisarri, J. M. Varona, Vacuum 62 (2-3), 143-150 (2001).
Uwagi
EN
1. Authors thank to Prof. Dr. Zafer TATLI and research assistants of Sakarya University, Faculty of Technology, Metallurgical and Materials Engineering Department, to Prof. Dr. Uğur KÖLEMEN, Assoc. Prof. Dr. Fikret YILMAZ and research assistants of Gaziosmanpaşa University Faculty of Applied Sciences, and KİTAM of Samsun 19 Mayıs University for their valuable contributions.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72906ee3-f7e0-4e5a-9a0d-36b7de7997a3