PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal analysis of the convective-radiative fin with a step change in thickness and temperature dependent thermal conductivity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper provides heat transfer analysis in a straight fin with a step change in thickness and variable thermal conductivity, which is losing heat by simultaneous convection and radiation. The calculations are carried out by using the differential transformation method (DTM) that can be applied to various types of differential equations. The results obtained employing DTM are compared with an accurate numerical solution to verify the accuracy of the proposed method. Several graphs are provided to illustrate how the temperature distribution is affected by the (i) thickness parameter, (ii) dimensionless fin semi thickness, (iii) length ratio, (iv) thermal conductivity parameter, (vi) Biot’s number, and (vii) radiation-conduction parameter. This collection of graphs provides a comprehensive picture of the thermal performance of the system under steady state conditions.
Rocznik
Strony
593--602
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Young Researchers Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
autor
  • Young Researchers Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • 1. Arslanturk C., 2009, Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity, Heat and Mass Transfer, 45, 4, 519-525
  • 2. Aziz A., 1994, Optimum design of a rectangular fin with a step change in cross-sectional area, International Journal of Heat and Mass Transfer, 21, 389-401
  • 3. Aziz A., Torabi M., 2012, Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature, Heat Transfer-Asian Research, 41, 2, 99-113
  • 4. Bert C.W., 2002, Application of differential transform method to heat conduction in tapered fins, ASME Journal of Heat Transfer, 124, 208-209
  • 5. Domairry G., Fazeli M., 2009, Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Communications in Nonlinear Science and Numerical Simulation, 14, 489-499
  • 6. Fouladi F., Hosseinzadeh E., Barari A., Domairry G., 2010, Highly nonlinear temperature-dependent fin analysis by variational iteration method, Heat Transfer Research, 41, 155-165
  • 7. Hassan A.H., 2004, Differential transformation technique for solving higher-order initial value problems, Applied Mathematics and Computation, 154, 299-311
  • 8. Khani F., Ahmadzadeh Raji M., Hamedi Nejad H., 2009, Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient, Communications in Nonlinear Science and Numerical Simulation, 14, 3327-3338
  • 9. Khani F., Aziz A., Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient, Communications in Nonlinear Science and Numerical Simulation, 15, 590-601
  • 10. Kraus A.D., Aziz A., Welty J.R., 2002, Extended Surface Heat Transfer, John Wiley, New York
  • 11. Kulkarni D.B., Joglekar M.M., 2009, Residue minimization technique to analyze the efficiency of convective straight fins having temperature-dependent thermal conductivity, Applied Mathematics and Computation, 215, 2184-2191
  • 12. Kundu B., 2007, Performance and optimum design analysis of longitudinal and pin fins with simultaneous heat and mass transfer: unified and comparative investigations, Applied Thermal Engineering, 27, 976-987
  • 13. Kundu B., 2009, Analysis of thermal performance and optimization of concentric circular fins under dehumidifying conditions, International Journal of Heat and Mass Transfer, 52, 2646-2659
  • 14. Kundu B., Aziz A., 2010, Performance of a convectively heated rectangular fin with a step change in cross-sectional area and losing heat by simultaneous convection and radiation (step fins under radiation environment), Journal of Heat Transfer – Trans. ASME, 132, 104502-1
  • 15. Kundu B., Das P.K., 2001, Performance analysis and optimization of annular fin with a step change in thickness, ASME Journal of Heat Transfer, 123, 601-604
  • 16. Malekzadeh P., Rahideh H., Karami G., 2006, Optimization of convective-radiative fins by using differential quadrature method, Energy Conversion and Management, 47, 1505-1514
  • 17. Sharqawy M.H., Zubair S.M., 2008, Efficiency and optimization of straight fins with combined heat and mass transfer – an analytical solution, Applied Thermal Engineering, 28, 2279-2288
  • 18. Torabi M., Yaghoobi H., 2013, Accurate solution for acceleration motion of a vertically falling spherical particle in incompressible Newtonian media, The Canadian Journal of Chemical Engineering, 91, 376-381
  • 19. Yaghoobi H., Khoshnevisrad P., Fereidoon A., 2011, Application of the differential transformation method to a modified van der pol oscillator, Nonlinear Science Letter A, 2, 171-180
  • 20. Yaghoobi H., Torabi M., 2011, The application of differential transformation method to nonlinear equations arising in heat transfer, International Communications in Heat and Mass Transfer, 38, 815-820
  • 21. Yaghoobi H., Torabi M., 2012, Analytical solution for settling of non-spherical particles in incompressible Newtonian media, Powder Technology, 221, 453-463
  • 22. Zhou J.K., 1986, Differential Transform and its Applications for Electrical Circuits, Wuhan, Huarjung University Press
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-728c6e77-12e5-42e4-9baa-0bcc82cb79a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.