Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper focuses on the preparation and characterization of thin films of SiO₂-NiO ceramic nanocomposite. These films were synthesized using the sol-gel method and deposited onto a quartz substrate through spin coating after hydrofluoric acid (HF) treatment for the glass substrate. The films synthesized using 70% SiO2-30% NiO mole ratio. Subsequently calcined at three different temperatures: 500°C, 700°C, and 900°C. The diagram of X-ray Diffraction (XRD) revealed the presence of large quantities of semiconductor NiO at 2θ= 37.4°, 62.8°, 75.5°, and 79.4° in addition to the presence of SiO2 in the structure, at 2θ=43.3°. The surface properties were studied using Scanning Electron Microscopy (SEM), and Fourier-Transform Infrared Spectroscopy (FTIR). The test results demonstrated structural and surface properties compatible with the requirements of sensing applications. FT-IR spectra shows absorption bands of Si-O-Si, Ni-O and O-H. This coating has shown good sensitivity and effective response toward ammonia gas under various measurement conditions, including temperatures ranging from 50 to 200°C. The film calcinated at 500 °C exhibited high sensitivity to NH3 gas at room temperature due to the presence of hydroxyl groups (OH-), which increased its ability to adsorb the gas. Additionally, the film calcinated at 900 °C showed even higher sensitivity compared to the film calcinated at 700 °C.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
357--364
Opis fizyczny
Bibliogr. 34 poz., fig., tab.
Twórcy
autor
- Department of Ceramics Engineering and Building Materials, University of Babylon, 964 Babylon, Iraq
autor
- Department of Ceramics Engineering and Building Materials, University of Babylon, 964 Babylon, Iraq
autor
- Department of Ceramics Engineering and Building Materials, University of Babylon, 964 Babylon, Iraq
Bibliografia
- 1. Shimizu Y., Egashira M. Basic aspects and challenges of semiconductor gas sensors, MRS Bull. (June) 1999, 18–24.
- 2. Bochenkov V.E., Sergeev G.B. Preparation and chemiresistive properties of nanostructured materials, Adv. Colloid Interface Sci. 2005; 116: 245–254.
- 3. Manawi, Yehia M., et al. A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials 2018; 11(5): 822.
- 4. Shahidi, S., Moazzenchi B., and Ghoranneviss M. A review-application of physical vapor deposition (PVD) and related methods in the textile industry. The European Physical Journal Applied Physics 2015; 71(3): 31302.
- 5. Brilis N., Foukaraki C., Bourithis E., Tsamakis D., Giannoudakos A., Kompitsas M., Xenidou T., Boudouvis A. Development of NiO-based thin film structures as efficient H2 gas sensors operating at room temperatures, Thin Solid Films 2007; 515: 8484–8489.
- 6. Hotovy I., Rehacek V., Siciliano P., Capone S., Spiess L. Sensing characteristics of NiO thin films as NO2 gas sensor, Thin Solid Films 2002; 418: 9–15.
- 7. Cattin L., Reguig B., Khelil A., Morsli M., Benchouk K., Bernede J. Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions, Appl. Surf. Sci. 2008; 254: 5814–5821.
- 8. Sta I., Jlassi M., Kandyla M., Hajji M., Koralli P., Allagui R., Kompitsas M., Ezzaouia H. Hydrogen sensing by sol–gel grown NiO and NiO:Li thin films, J. Alloy Compd. 2015; 626: 87–92.
- 9. Zhao L., Su G., Liu W., Cao L., Wang J., Dong Z., Song M. Optical and electrochemical properties of Cu-doped NiO films prepared by electrochemical deposition, Appl. Surf. Sci. 2011; 257: 3974–3979.
- 10. Soleimanpour A.M., Jayatissa A.H. Preparation of nanocrystalline nickel oxide thin films by sol–gel process for hydrogen sensor applications, Mater. Sci. Eng.: C 2012; 32: 2230–2234.
- 11. Soleimanpour A.M., Hou Y., Jayatissa A.H. Evolution of hydrogen gas sensing properties of sol–gel derived nickel oxide thin film, Sens. Actuators B: Chem. 2013; 182: 125–133.
- 12. Kamal H., Elmaghraby E.K., Ali S.A., Abdel-Hady K. Characterization of nickel oxide films deposited at different substrate temperatures using spray pyrolysis J. Cryst. Growth 2004; 262: 424–434.
- 13. Choi, Jeong-M., and Seongil Im. Ultraviolet enhanced Si-photodetector using p-NiO films. Applied Surface Science 2005; 244(1–4): 435–438.
- 14. Kareem, Shaimaa J., Asaad, W.M., Abbas, S., Al-Ethari, H. Carbide cutting tool coatings characterization of 8YSZ. Advances in Science and Technology. Research Journal 2024; 18(4).
- 15. Hotovy, I., Rehacek, V., Siciliano, P, Capone, S., Spiess L. Sensing characteristics of NiO thin films as NO2 gas sensor. Thin solid films 2002; 418(1): 9–15.
- 16. Hotovy, J. Huran, P. Siciliano, S. Capone, Spiess L., Rehacek V. The influences of preparation parameters on NiO thin film properties for gas-sensing application Sens. Actuators B 2001; 78: 126–132.
- 17. Hotový I., Huran J., Spiess L., Capkovic R., Hascík S. Preparation and characterization of NiO thin films for gas sensor applications, Vacuum 2000; 58: 300–307.
- 18. Imawan C., Solzbacher F., Steffes H., Obermeier E. TiOx-modified NiO thin films for H2 gas sensors: effects of TiOx-overlayer sputtering parameters, Sens. Actuators B 2000; 68: 184–188.
- 19. Brilis N., Foukaraki C., Bourithis E., Tsamakis D., Giannoudakos A., Kompitsas M. T. Xenidou, A. Boudouvis. Development of NiO-based thin film structures as efficient H2 gas sensors operating at room temperature, Thin Solid Films 2007; 515: 8489–8484.
- 20. Dirksen, James A., Duval K., and Ring T. A. NiO thin-film formaldehyde gas sensor. Sensors and Actuators B: Chemical 2001; 80(2): 106–115.
- 21. Lee, C.-Y., Chiang C.M., Wang Y.H., Yu-Hsiang Wang, Ma, R.H. A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection. Sensors and Actuators B: Chemical 2007; 122.2: 503–510.
- 22. Wang, J., Wei, L., Zhang, L., Jiang, C., et al. Preparation of high aspect ratio nickel oxide nanowires and their gas sensing devices with fast response and high sensitivity. Journal of materials chemistry 2012; 22(17): 8327–8335.
- 23. Takeuchi, K., Isobe, T., and Senna, M. Effects of mechanical pretreatment of precursor sols and gels on the formation of NiO/SiO2 composites with a controlled microstructure. Journal of non-crystalline solids 1996; 194(1–2): 58–62.
- 24. Kamyabi-Gol, Ata, Seyed Mojtaba Zebarjad, and Seyed Abdolkarim Sajjadi. Fabrication of NiO/SiO2 nanocomposites using sol–gel method and optimization of gelation time using Taguchi robust design method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009; 336(1–3): 69–74.
- 25. Cullity, B.D. Elements of X-ray Diffraction, Addison–Wesley Publ. Co., London 1967; 189.
- 26. Theil, J.A., et al. Local bonding environments of Si–OH groups in SiO2 deposited by remote plasma‐enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1990; 8(3): 1374–1381.
- 27. Brunet-Bruneau, A., et al. Infrared ellipsometry study of evaporated SiO2 films: Matrix densification, porosity, water sorption. Journal of applied physics 1997; 82(3): 1330–1335.
- 28. Vallée, C., et al. Inorganic to organic crossover in thin films deposited from O2/TEOS plasmas. Journal of non-crystalline solids 2000; 272(2–3): 163–173.
- 29. Gautam, M., and Ahalapitiya H. Jayatissa. Gas sensing properties of graphene synthesized by chemical vapor deposition. Materials Science and Engineering: C 2011; 31(7): 1405–1411.
- 30. Schönauer, D., Nieder, T., Germany, K., Wiesner, K., Wiesner, K., Fleischer, M. Investigation of the electrode effects in mixed potential type ammonia exhaust gas sensors. Solid State Ionics 2011; 192(1): 38–41.
- 31. Schönauer, D., Moos, R., Wiesner, K., Fleischer M. Selective mixed potential ammonia exhaust gas sensor. Sensors and Actuators B: Chemical 2009; 140(2): 585–590.
- 32. Predanocy, M., I. Hotový, and V. Řehaček. Gas sensor based on sputtered NiO thin films. 2016 11th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM). IEEE, 2016.
- 33. Abd Shahoodh, M., Ibrahim, F.T. and Guermazi, S. Investigations on TiO2-NiO@ In2O3 nanocomposite thin films (NCTFs) for gas sensing: synthesis, physical characterization, and detection of NO2 and H2S gas sensors. 2023.
- 34. Alotibi, T., Shirbeeny, W.M., Alshahrie, A., Aida M.S. Time-resolved sensitivity of a cadmium-doped copper oxide thin film as a chlorine gas detector. Advances in Science and Technology. Research Journal 2024; 18(2).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-728aee0c-c86e-4e1b-8eee-9d59f952f683
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.