PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of temperature on crack kinking and jumping in a cross-ply laminated beam

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To understand the mechanisms of crack kinking and jumping that occur within the 90◦ layer of a cross-ply fiber reinforced plastic laminated plate, double cantilever beam tests were performed at several temperatures for laminated plates with two types of stacking sequences. The crack kink angles were calculated using a bi-layer shear-deformable beam model. Furthermore, the interlaminar shear stresses were calculated using finite-element models to clarify the mechanism of the repeated jumps. The following results were obtained from these experiment and analysis; (i) a crack at the center tended to propagate in a self-similar manner more stably at higher temperatures, (ii) the applied load at which value the crack at the center started propagation decreased as the 90◦ layer became thicker, and (iii) the crack along a 0◦/90◦ interface jumped to the other interface because the shear force along the 0◦/90◦ interface due to the thermal stress decreased as the crack propagated along the interface.
Rocznik
Strony
349--369
Opis fizyczny
Bibliogr. 19 poz., rys. kolor.
Twórcy
autor
  • Department of Aerospace Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603, Japan
autor
  • Department of Aerospace Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603, Japan
autor
  • Department of Vehicle and Mechanical Engineering Meijo University 1-501 Shiogamaguchi, Tenpaku-ku Nagoya 468-8502, Japan
Bibliografia
  • 1. D.L. Hunston, W.D. Bascom, Effects of lay-up, temperature, and loading rate in double cantilever beam tests of interlaminar crack growth, Composites Technology Review, 5, 4, 118–119, 1983.
  • 2. P. Robinson, D.Q. Song, A modified DCB specimen for mode I testing of multi-directional laminates, J. Composite materials, 26, 11, 1554–1577, 1992.
  • 3. H. Chai, 1984, The characterization of mode I delamination failure in non-woven multidirectional laminates, Composites, 15, 4, 277–290, 1984.
  • 4. P. Robinson, F. Javidrad, D. Hitchings, Finite element modeling of delamination growth in the DCB and edge delaminated DCB specimens, Composite Structure, 32, 1–4, 275–285, 1995.
  • 5. A.B. de Morais, M.F. de Moura, J.P.M. Goncalves, P.P. Camanho, Analysis of crack propagation in double cantilever beam test of multidirectional laminates, Mechanics of Materials, 35, 7, 641–652, 2003.
  • 6. T.A. Sebaey, N. Blanco, C.S. Lopes, J. Costa, Numerical investigation to prevent crack jump in double cantilever beam tests of multidirectional composite laminates, Composites Science and Technology, 71, 13, 1587–1592, 2011.
  • 7. A.B. de Morais, M.F. de Moura, A.T. Marques, P.T. Castro, Mode-I interlaminar fracture of carbon/epoxy cross-ply composites, Composites Science and Technology, 62, 5, 679–686, 2002.
  • 8. J.A. Nairn, Energy release rate analysis for adhesive and laminate double cantilever beam specimens emphasizing the effect of residual stresses, International Journal of Adhesion and Adhesives, 20, 1, 59–70, 2000.
  • 9. J.G. Ratcliffe, M.W. Czabaj, and T.K. O’Brien, A test for characterizing delamination migration in carbon/epoxy tape laminates, NASA/TM-2013-218028, 1–19, 2013.
  • 10. J.G. Ratcliffe and N.V. De Carvalho, Investigating delamination migration in composite tape laminates, NASA/TM-2014-218289, 1–19, 2014.
  • 11. N.V. De Carvalho, B.Y. Chen, S.T. Pinho, J.G. Ratcliffe, P.M. Baiz, and T.E. Tay, Modeling delamination migration in cross-ply tape laminates, Composites: Part A, 71, 192–203, 2015.
  • 12. M.F. Perince, N.V. De Carvalho, J.G. Ratcliffe, P.M. Baiz, and S.R. Hallett, Experimental study on delamination migration in composite laminates, Composites: Part A, 73, 20–34, 2015.
  • 13. L.A. Carlsson, R.C. Matteson, F. Aviles, D.C. Loup, Crack path in foam cored DCB sandwich fracture specimens, Composites Science and Technology, 65, 15-16, 2612–2621, 2005.
  • 14. T. Yokozeki, Analysis of crack kinking in foam core sandwich beams, Composites Part A, 42, 10, 1493–1499, 2011.
  • 15. Japanese Industrial Standards, Testing method for interlaminar fracture toughness of carbon fibre reinforced plastics, JIS K7086-93, Japanese Standards Association, Tokyo, 1998.
  • 16. T. Yokozeki, Energy release rates of bi-material interface crack including residual thermal stresses: application of crack tip element method, Engineering Fracture Mechanics, 77, 1, 84–93, 2010.
  • 17. F. Erdogan, G.C. Sih, On the crack extension in plates under plane loading and transverse shear, Journal of Basic Engineering, 85, 4, 519–527, 1963.
  • 18. S. Prasad, L.A. Carlsson, Debonding and crack kinking in form core sandwich beam-I. Analysis of fracture specimens, Engineering Fracture Mechanics, 47, 6, 813–824, 1994.
  • 19. K. Kageyama, H. Okamura, Elastic Analysis of Infinitesimally Kinked Crack under Tension and Transverse Shear and the Maximum Energy Release Rate Criterion, Transactions of the Japan Society of Mechanical Engineers Series A, 48, 430, 783–791, 1982 [in Japanese].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-728936f6-f1c2-4785-81a0-3b2b0e138af0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.