PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Are the mechanical properties of Achilles tendon altered in CrossFit athletes? Reliability and accuracy of myotonometry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tendons adapt to loads affecting them by changing tendons’ mechanical and morphological properties. The aim of the study was to investigate the influence of involvement in sport activities in the form of CrossFit training by individuals of different age upon the mechanical properties of Achilles tendon. Methods: 231 people participated in the study. One group consisted of subjects who trained CrossFit as amateurs, the other group comprised subjects who were not physically active. Achilles tendon was studied for various positions of the ankle joint: 0° DF/PF, 10° DF, 20° DF, 20° PF and 40° PF. The following mechanical and viscoelastic tendon properties were measured using MyotonPRO: frequency [Hz], stiffness [N/m], decrement [log], relaxation time [ms] and creep [De]. The results have been compared in reference to physical activity, BMI, age and length of training history. Results: Both the tension and stiffness increased with degree of Achilles tendon stretching and decreased as it contracted. Higher values have been noted in the group of people in training and with higher BMI values. The elasticity of Achilles tendon decreased with plantar flexion increase. Lower elasticity has been recorded in the group in training and with higher BMI. No significant influence of age and length of training history upon the parameters achieved has been noted. Conclusions: The specificity of CrossFit training and accompanying mechanical load result in development of adaptation changes in Achilles tendon, in the form of its higher tone/tension and stiffness, as well as lower elasticity.
Rocznik
Strony
103--113
Opis fizyczny
Bibliogr. 45 poz., tab.
Twórcy
  • Faculty of Medical and Social Sciences, Warsaw Medical Academy of Applied Sciences. Warsaw, Poland
  • Center of Medical Rehabilitation and Osteopathy Rehapunkt, Piastów, Poland
  • Wladyslaw Bieganski Collegium Medicum, Jan Długosz University in Czestochowa, Częstochowa, Poland
  • Faculty of Medical and Social Sciences, Warsaw Medical Academy of Applied Sciences. Warsaw, Poland
  • Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland.
Bibliografia
  • [1] ALAWNA M.A., UNVER B.H., YUKSEL E.O., The Reliability of a Smartphone Goniometer Application Compared With a Traditional Goniometer for Measuring Ankle Joint Range of Motion, J. Am. Podiatr. Med. Assoc., 2019, 109 (1), 22–29, DOI: 10.7547/16-128.
  • [2] BARRETO S., PIERANTONI M., HAMMERMAN M., TÖRNQUIST E., LE CANN S., DIAZ A., ENGQVIST J. et al., Nanoscale characterization of collagen structural responses to in situ loading in rat Achilles tendons, Matrix Biol., 2023, 115, 32–47, DOI: 10.1016/j.matbio.2022.11.006.
  • [3] BIZZINI M., MANNION A.F., Reliability of a new, hand-held device for assessing skeletal muscle stiffness, Clin. Biomech., 2003, 18, 5, 459–461, DOI: 10.1016/s0268-0033(03)00042-1.
  • [4] CAMY C., BRIOCHE T., SENNI K., BERTAUD A., GENOVESIO C., LAMY E., FOVET T. et al., Effects of hindlimb unloading and subsequent reloading on the structure and mechanical properties of Achilles tendon-to-bone attachment, Faseb J., 2022, 36, 10, e22548, DOI: 10.1096/fj.202200713R.
  • [5] CARDONA-RAMIREZ S., STOKER A.M., COOK J.L., RICHARD M., Fibroblasts From Common Anterior Cruciate Ligament Tendon Grafts Exhibit Different Biologic Responses to Mechanical Strain, Am. J. Sports Med., 2021, 49, 1, 215–225, DOI: 10.1177/0363546520971852.
  • [6] CHEN L., CHENG Y., ZHOU L., ZHANG L., DENG X., Quantitative shear wave elastography compared to standard ultrasound (qualitative B-mode grayscalesonography and quantitative power Doppler) for evaluation of achillotendinopathy in treatment-naïve individuals: A cross-sectional study, Adv. Clin. Exp. Med., 2022, 31, 8, 847–854, DOI: 10.17219/acem/ 147878. PMID: 35593220.
  • [7] CRAWFORD S.K., THELEN D., YAKEY J.M., HEIDERSCHEIT B.C., WILSON J.J., LEE K.S., Regional shear wave elastography of Achilles tendinopathy in symptomatic versus contralateral Achilles tendons, Eur. Radiol., 2023, 33, 1, 720–729, DOI: 10.1007/s00330-022-08957-3.
  • [8] CRONIN N.J., LICHTWARK G., The use of ultrasound to study muscle-tendon function in human posture and locomotion, Gait Posture, 2013, 37, 305–312, DOI: 10.1016/ j.gaitpost.2012.07.024.
  • [9] DE MARCHI A., POZZA S., CENNA E., CAVALLO F., GAYS G., SIMBULA L., DE PETRO P., MASSÈ A., MASSAZZA G., In Achilles tendinopathy, the neovascularization, detected by contrast-enhanced ultrasound (CEUS), is abundant but not related to symptoms, Knee Surg. Sports Traumatol. Arthrosc., 2018, 26, 2051–2058, doi.org/10.1007/s00167-017-4710-8
  • [10] FENG Y.N., LI Y.P., LIU C.L., Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO, Sci. Rep., 2018, 8, 17064.
  • [11] FINNAMORE E., WAUGH C., SOLOMONS L., Transverse tendon stiffness is reduced in people with Achilles tendinopathy: a cross-sectional study, PLoS One, 2019, 14, e0211863.
  • [12] FISKER F.Y., KILDEGAARD S., THYGESEN M., GROSEN K., PFEIFFER-JENSEN M., Acute tendon changes in intense CrossFit workout: an observational cohort study, Scand. J. Med. Sci. Sports, 2017, 27, 11, 1258–1262, DOI: 10.1111/sms.12781.
  • [13] HUI W., RUYUE Y.U., MENG W., SHIKUN W., XINGYU O., ZHIWEN Y., SHUAI C.H. et al., Insulin-like growth factor binding protein 4 loaded electrospun membrane ameliorating tendon injury by promoting retention of IGF-1, J. Control Release, 2023, 356, 162–174, DOI: 10.1016/j.jconrel.2023.02.039.
  • [14] IANIERI G., SAGGINI R., MARVULLI R., TONDI G., APRILE A., RANIERI M., BENEDETTO G. et al., New approach in the assessment of the tone, elasticity and the muscular resistance: nominal scales vs MYOTON, Int. J. Immunopathol. Pharmacol., 2009, 22, 3, 21–24, DOI: 10.1177/03946320090220S304.
  • [15] IWATA M., YAMAMOTO A., MATSUO S., HATANO G., MIYAZAKI M., FUKAYA T., FUJIWARA M., ASAI Y., SUZUKI S., Dynamic Stretching Has Sustained Effects on Range of Motion and Passive Stiffness of the Hamstring Muscles, J. Sports Sci. Med., 2019, 11, 18 (1), 13–20.
  • [16] KONOW N., AZIZI E., ROBERTS T.J., Muscle power attenuation by tendon during energy dissipation, Proc. R. Soc., 2012, 279, 1108–1113, DOI: 10.1098/rspb. 2011.1435.
  • [17] KONOW N., ROBERTS T., The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration, Proc. Biol. Sci., 2015, 7, 282, DOI: 10.1098/rspb.2014.2800.
  • [18] KUBO K., MIYAZAKI D., YAMADA K., YATA H., SHIMOJU S., TSUNODA N., Passive and active muscle stiffness in plantar flexors of long distance runners, J. Biomech., 2015, 48, 10, 1937–1943, DOI: 10.1016/j.jbiomech.2015.04.012.
  • [19] LAZARCZUK S.L., MANIAR N., OPAR D.A., DUHIG S.J., SHIELD A., BARRETT R.S., BOURNE M.N., Mechanical, Material and Morphological Adaptations of Healthy Lower Limb Tendons to Mechanical Loading: A Systematic Review and Meta-Analysis, Sports Med., 2022, 52, 10, 2405–2429, DOI: 10.1007/s40279-022-01695-y.
  • [20] LEE Y., KIM M., LEE H., The Measurement of Stiffness for Major Muscles with Shear Wave Elastography and Myoton: A Quantitative Analysis Study, Diagnostics (Basel), 2021, 11, 3, 524, DOI: 10.3390/diagnostics11030524.
  • [21] LI H., KORCARI A., CIUFO D., MENDIAS C.L., RODEO S.A., BUCKLEY M.R., LOISELLE A.E. et al., Increased Ca 2+ signaling through Ca V 1.2 induces tendon hypertrophy with increased collagen fibrillogenesis and biomechanical properties, BioRxiv, 2023, 24, 119–127, DOI: 10.1101/ 2023.01.24.525119. Preprint.
  • [22] LI Y.P., LIU C.L., ZHANG Z.J., Feasibility of Using a Portable MyotonPRO Device to Quantify the Elastic Properties of Skeletal Muscle, Med. Sci. Monit., 2022, 28, e934121, DOI: 10.12659/MSM.934121.
  • [23] LIU C.L., LI Y.P., WANG X.Q., Quantifying the stiffness of Achilles tendon: intra- and Inter-Operator reliability and the effect of ankle joint motion, Med. Sci. Monit., 2018, 24, 4876– 4881, DOI: 10.12659/MSM.909531.
  • [24] MAEDA E., KAWAMURA R., SUZUKI T., MATSUMOTO T., Rapid fabrication of tendon-like collagen gel via simultaneous fibre alignment and intermolecular cross-linking under mechanical loading, Biomed. Mater., 2022, 17, 4, DOI: 10.1088/ 1748-605X/ac7305.
  • [25] MAGNUSSON S.P., KJAER M., The impact of loading, unloading, ageing and injury on the human tendon, J. Physiol., 2019, 597, 1283–1298, DOI: 10.1113/JP275450.
  • [26] MAHAN J., DAMODAR D., TRAPANA E., BARNHILL S., UGARTE NUNO A., SMYTH N.A., AIYER A. et al., Achilles tendon complex: The anatomy of its insertional footprint on the calcaneus and clinical implications, J. Orthop., 2019, 17, 221–227, DOI: 10.1016/j.jor.2019.06.008.
  • [27] MIYAMOTO N., HIRATA K., INOUE K., HASHIMOTO T., Muscle Stiffness of the VastusLateralis in Sprinters and Long-Distance Runners, Med. Sci. Sports Exerc., 2019, 51, 10, 2080–2087, DOI: 10.1249/MSS.0000000000002024.
  • [28] MORGAN G.E., MARTIN R., WILLIAMS L., Objective assessment of stiffness in Achilles tendinopathy: a novel approach using the MyotonPRO, BMJ Open Sport Exerc. Med., 2018, 4, e000446.
  • [29] MROZIK K., BŁACH B., KUSIAK M., JANUSIAK M., POŻAROWSZCZYK B., KISILEWICZ A., KAWCZYŃSKI A. et al., Defects of plyometric training on the rectus femoris muscle stiffness among volleyball players measured by myotometry, Polish J. Sport Med., 2017, 4 (4), 273–279, DOI: 10.5604/ 01.3001.0010.7966.
  • [30] NGUYEN A.P., DETREMBLEUR C., FISETTE P., SELVES C., MAHAUDENS P., MyotonPro Is a Valid Device for Assessing Wrist Biomechanical Stiffness in Healthy Young Adults, Front Sports Act. Living, 2022, 4, 797975.
  • [31] NUÑEZ F.J., RITZMANN R., HERNANDEZ-ABAD F., MARTINEZ J.C., SUAREZ-ARRONES L., Muscle Architecture, Morphology, and Mechanical and Functional Properties of Biceps Femoris Long Head in Professional Soccer Players with a Prior Healed Injured Hamstring, J. Clin. Med., 2022, 11, 23, 7222, DOI: 10.3390/jcm11237222.
  • [32] ORNER S., KRATZER W., SCHMIDBERGER J., Quantitative tissue parameters of Achilles tendon and plantar fascia in healthy subjects using a handheld myotonometer, J. Bodyw. Mov. Ther., 2018, 22, 105–111, DOI: 10.1016/j.jbmt.2017.06.015.
  • [33] POŻAROWSZCZYK B., PAWLACZYK W., SMOTER M., ZARZYCKI A., MROCZEK D., KUMOREK M., WITKOWSKI K. et al., Effects of Karate Fights on Achilles Tendon Stiffness Measured by Myotonometry, J. Hum. Kinet., 2017, 56, 93–97, DOI: 10.1515/ hukin-2017-0026.
  • [34] RAMÍREZ-DELACRUZ M., BRAVO-SÁNCHEZ A., ESTEBAN- -GARCÍA P., JIMÉNEZ F., ABIÁN-VICÉN J., Effects of Plyometric Training on Lower Body Muscle Architecture, Tendon Structure, Stiffness and Physical Performance: A Systematic Review and Meta-analysis, Sports Med. Open., 2022, 8, 1, 40, DOI: 10.1186/s40798-022-00431-0.
  • [35] ROGERS S.A., WHATMAN C.S., PEARSON S.N., KILDING A.E., Assessments of Mechanical Stiffness and Relationships to Performance Determinants in Middle-Distance Runners, Int. J. Sports Physiol. Perform., 2017, 12, 10, 1329–1334, DOI: 10.1123/ijspp.2016-0594.
  • [36] SAWADKAR P., PLAYER D., BOZEC L., MUDERA V., The mechanobiology of tendon fibroblasts under static and uniaxial cyclic load in a 3D tissue engineered model mimicking native extracellular matrix, J. Tissue Eng. Regen. Med., 2020, 14, 1, 135–146, DOI: 10.1002/term.2975.
  • [37] SCHNEEBELI A., FALLA D., CLIJSEN R., BARBERO M., Myotonometry for the evaluation of Achilles tendon mechanical properties: a reliability and construct validity study, BMJ Open Sport Exerc. Med., 2020, 6, 1, e000726, DOI: 10.1136/ bmjsem-2019-000726.
  • [38] TAS S., SALKIN Y., An investigation of the sex-related differences in the stiffness of the Achilles tendon and gastrocnemius muscle: Inter-observer reliability and inter-day repeatability and the effect of ankle joint motion, Foot, 2019, 41, 44–50, DOI: 10.1016/j.foot.2019.09.003
  • [39] TSUCHIYA Y., TAKAKURA H., OSAWA S., IZAWA T., Impact of high-intensity interval training on tendon related gene expression in rat Achilles tendon, Biochem. Biophys. Res. Commun., 2023, 658, 116–121, DOI: 10.1016/j.bbrc.2023.03.076.
  • [40] VATOVEC R., MARUŠIČ J., MARKOVIĆ G., ŠARABON N., Effects of Nordic hamstring exercise combined with glider exercise on hip flexion flexibility and hamstring passive stiffness. J. Sports Sci., 2021, 39, 20, 2370–2377, DOI: 10.1080/ 02640414.2021.1933350.
  • [41] WANG H.K., LIN K.H., SU S.C., Effects of tendon viscoelasticity in Achilles tendinosis on explosive performance and clinical severity in athletes, Scand. J. Med. Sci. Sports, 2012, 22, e147–e155, DOI: 10.1111/j.1600-0838.2012.01511.x.
  • [42] WINNICKI K., OCHAŁA-KŁOS A., RUTOWICZ B., PĘKALA P.A., TOMASZEWSKI K.A., Functional anatomy, histology and biomechanics of the human Achilles tendon – A comprehensive review, Ann. Anat., 2020, 229, 151461, DOI: 10.1016/ j.aanat.2020.151461.
  • [43] YU C., DENG L., LI L., ZHANG X., FU W., Exercise Effects on the Biomechanical Properties of the Achilles Tendon-A Narrative Review, Biology, 2022, 11, 2, 172, DOI: 10.3390/ biology11020172.
  • [44] YU J.F., CHANG T.T., ZHANG Z.J., The Reliability of MyotonPRO in Assessing Masseter Muscle Stiffness and the Effect of Muscle Contraction, Med. Sci. Monit., 2020, 26, e926578, DOI: 10.12659/MSM.926578.
  • [45] ZHANG Z.J., NG G.Y., FU S.N., Effects of habitual loading on patellar tendon mechanical and morphological properties in basketball and volleyball players, Eur. J. Appl. Physiol., 2015, 115, 11, 2263–2269, DOI: 10.1007/ s00421-015-3209-6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7288da47-813d-411a-82cc-ccfee1012e10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.