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An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for 
dynamic model identification and a functional conjugate gradient method for determining optimal 
operating condition is proposed and applied to a biochemical reactor. The optimiser  incorporates 
the identified model and determines the optimal operating condition while maximising the process 
performance. This strategy is computationally advantageous as it involves separate estimation of 
states and process parameters in reduced dimensions. In addition to assisting on-line dynamic 
optimisation, the estimated time varying uncertain process parameter information can also be useful 
for continuous monitoring of the process.  This strategy ensures that the biochemical reactor is 
operated at the optimal operation while taking care of the disturbances that are encountered during 
operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic 
optimizer for on-line optimising control of uncertain nonlinear biochemical systems. 
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1. INTRODUCTION 

Bioprocess technology is currently employed for the production of various commodity and fine 
chemicals. Optimal operation of bioreactors can be achieved by means of the operational strategies 
derived based on the optimisation approaches known as dynamic optimisation and on-line optimisation. 
The determination of the open-loop time varying control policies that maximises or minimises a given 
performance index is referred to as optimal control/dynamic optimisation. The optimal control policies 
that ensure the satisfaction of the product property requirements and the operational constraints can be 
calculated off-line, which are then implemented on-line so that the system is operated in accordance 
with these control policies. Optimal control is a widely used approach and various techniques have 
been reported for chemical processes including bioreactors (Bryson and Ho, 1975; Catalina and 
Gabriela, 2007; Jimmy et al., 2010;  Jin et al., 2011; Peroni et al., 2005; Thomas and Kiparissides, 
1984; Xie et al., 2001). However, on-line optimising control is a promising approach to fulfill the 
requirement of monitoring and control of bioreactors. Optimising control deals with the problem of 
changing the operating conditions of a dynamic process on-line to achieve economic optimum. In 
recent years, various optimising control techniques have been reported for different applications 
including bioreactors (Beluham et al., 1995; Chen et al., 1998; Kim et al., 1991; Noda et al., 2000; 
Zhou et al.,1999). In bioprocesses, several factors such as complex nature of microorganism growth, 
disturbance dynamics, parameter uncertainties and noisy process variables severely affect the operating 
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performance. The on-line optimising control scheme has to take into account such changes and 
continuously reevaluate the process to maximise its economic production. Since bioprocess conditions 
are ever changing, the optimisation algorithm should incorporate a model whose parameters need to be 
continuously identified on-line. Thus, the selection of a model structure plays an important role in on-
line optimisation. It is usual to view nonlinear systems as linear systems and compensate for 
nonlinearities through adaptation of linear model parameters. On-line optimisation involving adaptive 
process models has been widely employed to biochemical processes (Jang et al., 1987; Hamer and 
Richenberg, 1988; Harmon et al., 1987; Rolf and Lim, 1985; Ryhiner et al.,1992).  In most of those 
applications, a linear process model with a simple structure is employed and convergence in parameters 
and efficiency in operation is achieved. Those studies are based on steady state optimisation involving 
an identification period between optimisation steps to compute steady state gain to predict process 
output. When process parameters change widely, methods based on steady state/linear models fail to 
achieve convergence. Process models based on fundamental physical and chemical laws are preferred 
for on-line optimisation to empirical input-output models because of their wide range of validity and 
physically more meaningful variables to identify. In addition, some of the bioprocess variables are not 
available as direct measurements and they need to be estimated on-line using known process 
measurements. Therefore, the state/parameter estimation scheme also becomes an integral part of on-
line optimisation. On-line optimisation based on a physical process model involves the procedure of 
continuously revising the dynamic model, thus characterizing the process during transients and 
eliminating the need to wait for steady states. During steady state operation, the dynamic model acts as 
a steady state model to deduce the optimum. Jang et al. (1987) have presented a two-phase approach 
based on a physical process model in which the first phase is concerned with the on-line estimation of 
states and parameters of nonlinear process model and the second phase deals with the determination of 
optimum operating strategy. The state and parameter estimation problem is solved by using a nonlinear 
programming approach, which generally requires more computational effort. It has been mentioned that 
the estimation problem must be executed whenever a change of reasonable magnitude is anticipated in 
the parameters. However, since the changes in the identified parameters are reflected by measured data 
and if the measurements are noisy, it is difficult to observe the incipient changes in the process from the 
parameter estimates. Moreover, due to the use of samples in aggregate, it is not possible to extract 
instantaneous changes in process parameters. If such time varying process parameters are available 
more frequently, they can be readily incorporated in on-line optimisation  scheme to characterize the 
real process operation. 

In this work, an on-line optimising control strategy involving a computationally efficient two level 
extended Kalman filter (EKF) for dynamic model identification with separate estimation of states and 
parameters, and a functional conjugate gradient method for determining optimal operating condition is 
presented and applied to a biochemical reactor. The dynamic model involved in the estimation module 
represents the true dynamics of the system incorporating physical, chemical and biological parameters. 
The two level extended Kalman filter employed in the estimation module is computationally efficient 
as it provides separate estimation of states and uncertain process parameters. In the estimation module, 
measurements are filtered, measured/unmeasured states are estimated and process parameters are 
identified at every sampling instant and incorporated in the optimiser to compute the optimal operating 
condition that maximises the process performance. The performance of the on-line optimising control 
strategy of this work is evaluated through simulation by applying it to a biochemical reactor. 

2. ON-LINE OPTIMISING CONTROL STRATEGY 

This strategy consists of a two level extended Kalman filter (EKF) as an estimation module and a 
functional conjugate gradient method as an optimisation module. The estimation module provides the 
estimates of measured/unmeasured process states and uncertain process parameters which are then 
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incorporated in the optimisation module to determine the optimal operating condition. The estimation 
and optimisation modules are repeatedly in tandem to follow continually changing input disturbances 
and process parameters. A schematic of the proposed on-line optimising control strategy is shown in 
Fig. 1. 

 
Fig. 1. Two level EKF assisted on-line optimisation control scheme 

2.1. State and parameter estimation 

Methods based on filtering and observation are more useful for state and parameter estimation in 
nonlinear processes. Such methods can filter out the noise in the process measurements and provide 
optimal estimates for states and parameters. The extended kalman filter (EKF) is a widely used method 
of filtering and observation. The EKF is a heuristic filter based on the linearised dynamics of a system, 
and has become the standard for state and parameter estimation of nonlinear systems. Many successful 
applications of EKF for state and parameter estimation have been reported (Gudi et al., 1994; Frederic 
et al., 2011; Venkateswarlu, 2004; Venkateswarlu and Avantika, 2001; Venkateswarlu and Gangiah, 
1992). EKF provides a combined estimation of states and parameters involving full size matrix 
operations. If the state and parameter estimation is carried out separately, the computational effort can 
be reduced considerably due to the involvement of matrix calculations in reduced dimensions. Thus in 
this study, a method of two level extended Kalman filter is presented for separate estimation of states 
and parameters.  The estimation scheme is similar to that employed for process fault diagnosis via state 
and parameter estimation (Venkateswarlu et al., 1992). 

By considering time varying parameters in the process model, the expressions for states and parameters 
are given by: 

 ( ) ( ) ( ) ( ) 00,,, xxtwtxftx xx =+= θ&  (1) 

 ( ) ( ) ( ) ( ) 00,,, xxtwtxpt =+= θθ θθ&  (2) 

where fx and pθ are nonlinear functions of states x, parametersθ  and also input u. The wx  and wθ  are 
process noise with covariance matrices Qx  and Qθ. The nonlinear observation model can be expressed 
as 

 ( ) ( ) ( )kkk ttxhty νθ += ,,  (3) 

where h is a nonlinear function of states and parameters, and v is observation noise with zero mean. The 
linear measurement relation is given by 
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 ( ) ( ) ( )kkk ttxHty ν+=  (4) 

The states, x(t) and parameters, θ(t) of Eqs. (1) and (2) can be estimated on-line using the known  
measurements, y(tk) in conjunction with the process model. 

2.2. Two-level extended Kalman filter 

By this method, states are estimated separately in the first level by a state extended Kalman filter and in 
the second level, uncertain process parameters are identified separately by a parameter extended 
Kalman filter. States and parameters are exchanged between the estimators for each new value of 
measurement. A schematic of the state estimator is shown in Fig. 1. 

2.2.1 State estimation filter 

Starting with an initial estimate, 0x̂  and its covariance, Px0, the correct estimate, ( )kk ttx /ˆ and its 
associate covariance, Px(tk/tk) at time tk are computed using the following equations: 
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The propagated expressions for the estimate and its covariance from tk to tk+1 are: 
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The propagated expressions at time tk+1, )/(ˆ 1 kk ttx +  and Px (tk+1/tk) form the recursive initial conditions 
for correction. 

2.2.2 Parameter identification  filter 

Starting with the parameter estimate, 0̂θ  and its covariance, 0θP  , the correct estimate )/(ˆ kk ttθ and its 
covariance Pθ(tk/tk), at time tk are computed using the following equations: 
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The propagating expressions for the estimate and its covariance from tk to tk+1 are: 
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where  
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The propagated expressions at time tk+1, )/(ˆ 1 kk tt +θ and Pθ (tk+1/tk) form the recursive initial conditions 
for correction. The initial covariance matrices Px0 and Pθ0 are used to reflect errors in the initial states 
and parameters. The process and observation noise covariance matrices Qx, Qθ  and R are used to reflect 
uncertainty in the process model and measurements. The matrices Px0, Pθ0, Qx, Qθ  and R are generally 
selected as design parameters. The performance index J of the two level extended Kalman filter is 
expressed by: 
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2.3. On-line optimisation 

The on-line optimising control problem can be stated in an  abstract form as follows: Given an 
operating point with measurements, y and a set of manipulated inputs, u, determine the values of u as a 
function of time that maximize the measure of profitability of the plant while meeting the operating 
constraints of the process. For the optimisation problem, the nonlinear plant and the measurement 
model expressions can be rewritten as 

 ) , , ,( tuxfx θ=&  (10) 

 y = g(x, u, θ, t) (11) 

The operating constraints are expressed as 

 e (x, u, θ, t) ≤ 0 (12) 

In these equations, x represents state variables, u is manipulated input and θ denotes unknown 
parameters and unmeasured disturbances. This type of physical process model has a wide range of 
applicability for identifying more meaningful variables. However, if a more detailed model is used, 
computational complexity increases. So a compromise has to be made between the level of detail used 
and the number of parameters estimated on-line. Since the optimiser incorporates the states and 
parameters identified through separate estimation with less computational requirement, physical 
process models of higher dimensions can be employed with this strategy. 

The optimisation problem determines the optimal operating condition, u(t) by maximising   the  
objective functional or performance index 

 ( )dttuxI  ,,, ∫= θφ  (13) 

subject to the model equations and constraints, Eqs. (10)-(12). 

2.3.1. Functional conjugate gradient method 

The conjugate gradient method generates a set of mutually conjugate direction vectors using the 
gradient vector as the basis. The conjugate gradient method when applied to functional optimisation is 
called functional conjugate gradient method. This method involves successive approximation in the 
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control domain, utilising the gradient to compute a new control function in each iteration. The 
implementation of the method involves the following procedure (Fletcher and Reeves, 1964). 

The objective function in Eq. (13) is in the form 

 dttuxofI ) , , ,( θ∫=  (14) 

The Hamiltonian is formulated as 

 fT
ofH  λ+=  (15) 

where λ represents a  set of adjoint variables, the relation of which is given by 
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The gradient, g and the direction, ξ are calculated as 
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The initial conditions are taken to be 

 ( ) ( )00 ugtg =   and  ( ) ( ) τξ ≤≤−= tugt 0;00
 (19) 

The performance of the above on-line optimising control strategy is evaluated by applying to the 
following biochemical system. 

2.4. Application system 

A dynamic model of the chemostat is described by the following differential equations (Harmon et al., 
1987): 
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 (20) 

where c is the biomass concentration, s the is substrate concentration, w is the weighted average of 
previous substrate concentrations, sf is the substrate feed concentration, D is the dilution rate, μ m is the 
maximum specific growth rate, ks is the monad constant and Y is the yield. The parameter a is the delay 
term which is a measure of the organisms’ability to adjust their growth rate when a change in the 
condition of the chemostat occurs. For a constant volume fermentation, the product Dc is clearly a 
productivity measure, where D is the dilution rate and c is the biomass concentration. The on-line 
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optimising control strategy determines the optimal dilution rate that maximises the productivity, Dc. 
The parameters sf and μm are estimated at each sample time at the identification phase and incorporated 
in the optimizer. The nominal process parameter values used in this simulation are: μm =0.7 h-1

, ks =22 g 
l-1, Y =0.5, a=3 h-1, sf =30 g l-1, c(0)=14.153 g l-1, s(0) = w(0) = 1.6923 g l-1. 

3. RESULTS AND DISCUSSION 

In a  biochemical reactor, the objective is to maximise the productivity measure, Dc through 
optimisation of the manipulated input, D while taking care of the uncertainties in feed concentration, sf 
and the specific growth rate, μm.  Since, the disturbances affect the process over time, it is necessary to 
continuously revise the process model using the most recent measurements. The measurements 
available from the process are concentrations of c and s. The state w is not measured on-line and has to 
be estimated along with the parameters sf and μm.  

The mathematical model of the process is integrated numerically using a step size of 0.1 h. The 
simulated process measurements of every 0.1 h are used for optimal state estimation and on-line 
optimisation. In order to reflect the real situation, the measurements are corrupted with a zero mean 
random Gaussian noise of about 1% of their actual values. The filter design parameters such as the 
initial state and parameter noise covariance matrices (Px0 ,Pθ0), the process noise covariance matrices 
(Qx, Qθ) and the observation noise covariance matrix (R) are initially selected using process variable 
and noise information and further tuned so as to obtain better estimator performance. These filter 
design parameters are given in Table 1. The two level EKF is thus designed and applied to estimate sf, 
μm and w using the known measurements c and s. The identified model is incorporated in the optimiser 
to determine dilution rate, D. 

Table 1. Filter design parameters 

Px0 Pe0 Q1 Q2 R 

⎥
⎦

⎤
⎢
⎣

⎡
000500
000050

.
.

  ⎥
⎦

⎤
⎢
⎣

⎡
0.0005        0.0

0.0        0.0005
  ⎥

⎦

⎤
⎢
⎣

⎡
0.2        0.0
0.0        20.

  ⎥
⎦

⎤
⎢
⎣

⎡
0.2        0.0
0.0        20.

  ⎥
⎦

⎤
⎢
⎣

⎡
1.0       0.0
0.0       01.

 

The sensitivity of the estimator in conjunction with the optimiser is investigated for normal process 
operation by studying the effect of filter design parameters as well as measurement noise. Table 2 
shows the quantitative performance of the estimator evaluated for an operating period of 60 hrs for 
normal process operation. The ISE values shown in Table 2 are the summated squared differences 
between the actual states of x, s and w obtained through numerical simulation and those corresponding 
to estimated states. The results shown in Table 2 are obtained by changing each of the filter design 
parameter while keeping the remaining parameters unchanged. This ISE measure reflects the 
performance measure of Eq. (9) in simplest form. From these results it can be observed that there is no 
significant change in estimator performance for 10 times increase or decrease of filter design 
parameters from their initially set values. Decreasing the measurement noise has shown a moderate 
influence on the estimator performance, while increasing it to a higher level has shown considerable 
influence on the estimator performance. The results thus indicate the stability of the estimator towards 
the effect of filter design parameters. 

The estimated state responses using normal process measurements with zero mean random Gaussian 
noise of about 1% to their actual values are shown in Fig. 2. The true values shown in Fig. 2 represent 
the numerical values obtained from the solution of model equations. The estimated profiles in Fig. 2 
correspond to the biomass and substrate concentrations beginning from their initial values of 14.153 
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g/L and 1.6923 g/L, respectively. These results indicate a  close correspondence between the estimated 
and true states. Fig. 3 shows the results of the estimated process parameters, the optimal dilution rate 
and the process performance measure based on measurements corresponding to normal process 
parameters. Fig. 4 shows the results of the estimated process parameters, the optimal dilution rate and 
the process performance measure involving normal noisy measurements corresponding to change in sf 
from 30 to 25 /l at 30 hrs and change in um from 0.7 to 0.85 h-1 at 40 hrs during the operation. The 
identified process parameters in Figs. 3 and 4 show that they are in close agreement with their 
corresponding true values. The optimal dilution rate and the process performance measure in Fig. 4 
exhibit the fast tracking ability of the optimiser to adapt the process disturbances. 

Table 2. Estimator performance for different levels of filter design parameters and noise 

Filter design  
Parameter/noise Level ISE 

Initial state   
Covariance matrix 

Px0 /10 3.2539 
Px0 3.2463 

10Px0 3.1763 
Pθ0/10 3.2473 

Pθ0 3.2463 
10Pθ0 3.2362 

Process noise   
Covariance matrix 

Qx/10 3.3738 
Qx 3.2463 

10Qx 3.366 
Qθ/10 3.2463 

Qθ 3.2463 
10Qθ 3.2463 

Observation noise 
covariance matrix 

R/10 3.0188 
R 3.2463 

10R 3.3828 

Observation noise 
v/10 2.7995 

v 3.2463 
10v 12.2576 

 
Fig. 2. State estimation results of two level EKF assisted on-line optimiser with no parameter uncertainties 

Unauthenticated | 89.73.89.243
Download Date | 3/26/14 8:46 AM



Optimal state estimation and on-line optimisation of a biochemical reactor 

457 
 

 
Fig. 3. Results of two level EKF assisted on-line optimiser with no parameter uncertainties 

The performance of the estimator is also studied for changes in both sf and um. Fig. 5 shows the results 
of the estimated process parameters, the optimal dilution rate and the process performance measure for 
change in sf from 30 to 25 g/l at 30 hrs and change in um from 0.7 to 0.85 h-1 at 40 hrs during operation 
when the measurements with zero mean random Gaussian noise of 5 times higher than the normal noise 
are employed. The results in Fig. 5 indicate  how the optimal dilution rate influences the process 
performance for changes in sf and um in the presence of more noise in the measurements. Because of the 
presence of more noise in the measurements, the specific growth rate initially deviates from the true 
value and after some time it reaches and tracks the true value quite well.  These results show the noise 
filtering ability of the estimator and the performance of the optimiser in establishing the optimal 
operating conditions in the presence of uncertain parameters. The proposed strategy is also evaluated 
by considering measurements available at wider sampling instants. The discrete updating step of the 
two-level EKF has the flexibility to incorporate the measurements available at wider sampling instants 
while iterating the continuous prediction step with lower integration time. Fig. 6 shows the results of 
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the strategy with parameter uncertainties when measurements of 0.5 hr. sampling instant with zero 
mean random Gaussian noise of 5 times higher than the initially considered noise are employed. These 
results show that the on-line optimising control strategy of this study can be employed with the noisy 
measurements sampled at wider discrete time instants. The results demonstrate a better performance of 
the two-level EKF supported dynamic optimiser for optimal control of biochemical reactor in the 
presence of sudden and gradual process parameter uncertainties as well as noise in the measurements. 

 
Fig. 4. Results of two level EKF assisted on-line optimiser in the presence of parameter uncertainties 
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Fig. 5. Results  of two-level EKF assisted online optimiser in the presence of parameter uncertainties 
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Fig. 6. Results of two-level EKF assisted on-line optimiser in the presence of parameter uncertainties 

4. CONCLUSIONS 

Biochemical process conditions vary due to culture aging, spontaneous mutations, feed and 
environmental conditions. The location and amplitude of the maximum cellular productivity can 
change due to these conditions. In order to cope-up with the changing process conditions and 
disturbances, on-line identification of the dynamic process model and determination of optimal 
operating condition based on the identified model is necessary. The on-line optimising strategy of this 
study has an estimation module to provide process state and uncertain process parameter information, 
and an optimisation module to determine the optimal operating condition for the process. This strategy 
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can be conveniently implemented to physical process models of higher dimensional systems due to 
separate state and parameter estimation with the computations in reduced dimensions. The estimated 
process parameters and their variations serve to monitor the process more effectively. The results show 
the usefulness and reliability of the proposed approach for on-line optimisation of uncertain nonlinear 
dynamic systems. 

SYMBOLS 

c  biomass concentration, g l-1  
D  dilution rate, h-1  
Dc  the productivity measure 
fx  nonlinear function of states 
fθ   nonlinear function of parameters 
h  measurement model 
ks  monad constant, g l-1  
Px0  initial state noise covariance matrix 
Pθ0 initial parameter covariance matrix  
Qx   state model process noise covariance matrix 
Qθ.  parameter model process noise covariance matrix 
R  observation noise covariance matrix 
s  substrate concentration, g l-1  
sf substrate feed concentration, g l-1 
t  time, h 
tk  discrete time, h 
u  manipulated input 
v  observation noise 
w  weighted average of previous substrate concentrations, g l-1 
wx process noise associated with states 
wθ   process noise associated with parameters 
x  state variables 
x̂   estimated states  
y  process measurements 
Y  yield 

Greek symbols 
θ parameters 
θ̂  estimated parameters 
μ   specific growth rate h-1

 

μm  maximum specific growth rate h-1 
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