PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of a back side dielectric mirror on thin film silicon solar cells performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Back side p+ emitter thin silicon solar cells have been constructed using vapor phase epitaxy. Double porous structure on a c-Si substrate was used as a seed substrate in order to enable active layer separation after vapor phase epitaxy growth. Structure of the back side emitter solar cell was obtained in situ during the epitaxy process. In order to enhance solar cell response to light from a range of 700–1200 nm wavelength, the back side dielectric mirror was developed and optimized by means of a computer simulation and deposited by plasma enhanced chemical vapor deposition. At the same time, a reference sample was fabricated. Comparison of solar cells performance with or without the back side mirror was performed and clearly shows that the quality of solar light conversion into the electricity by means of solar cells, can be improved by using the structure proposed in this article.
Czasopismo
Rocznik
Strony
151--159
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B 20-618 Lublin, Poland
autor
  • Université de Lyon, Institut des Nanotechnologies de Lyon INL – UMR5270, CNRS, Ecole Centrale de Lyon, INSA Lyon, Villeurbanne, F-69621, France
  • Université de Lyon, Institut des Nanotechnologies de Lyon INL – UMR5270, CNRS, Ecole Centrale de Lyon, INSA Lyon, Villeurbanne, F-69621, France
Bibliografia
  • [1] German Solar Energy Society, Planning and Installing Photovoltaic Systems: A Guide for Installers, Architects and Engineers, 2nd Ed., Routledge, Berlin 2008.
  • [2] GRAY J.L., The physics of the solar cell, [In] Handbook of Photovoltaic Science and Engineering, [Eds.] A. Luque, S. Hegedus, Wiley, West Sussex 2003.
  • [3] XIAOWAN DAI, RUI JIA, GUOYU SU, HENGCHAO SUN, KE TAO, CHAO ZHANG, PENGFEI ZHANG, ZHI JIN, XINYU LIU, The influence of surface structure on diffusion and passivation in multicrystalline silicon solar cells textured by metal assisted chemical etching (MACE) method, Solar Energy Materials and Solar Cells 186, 2018, pp. 42–49, DOI: 10.1016/j.solmat.2018.06.011.
  • [4] RUI REN, ZHENG ZHONG, Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector, Optics Communications 417, 2018, pp. 110–114, DOI: 10.1016/j.optcom.2018.02.051.
  • [5] SEBA H.Y., HADJERSI T., ZEBBAR N., Bragg mirrors porous silicon back reflector for the light trapping in hydrogenated amorphous silicon, Applied Surface Science 350, 2015, pp. 57–61, DOI: 10.1016/j.apsusc.2015.02.091.
  • [6] LEVY F., Film growth and epitaxy: methods, [In] Encyclopedia of Condensed Matter Physics, [Eds.] F. Bassani, G.L. Liedl, P. Wyder, Elsevier, 2005, pp. 210–222.
  • [7] RADHAKRISHNAN H.S., MARTINI R., DEPAUW V., VAN NIEUWENHUYSEN K., BEARDA T., GORDON I., SZLUFCIK J., POORTMANS J., Kerfless layer-transfer of thin epitaxial silicon foils using novel multiple layer porous silicon stacks with near 100% detachment yield and large minority carrier diffusion lengths, Solar Energy Materials and Solar Cells 135, 2015, pp. 113–123, DOI: 10.1016/j.solmat.2014.10.049.
  • [8] FAVE A., QUOIZOLA S., KRAIEM J., KAMINSKI A., LEMITI M., LAUGIER A., Comparative study of LPE and VPE silicon thin film on porous sacrificial layer, Thin Solid Films 451–452, 2004, pp. 308–311, DOI: 10.1016/j.tsf.2003.11.055.
  • [9] IVANOV I.I., NYCHYPORUK T.V., SKRYSHEVSKY V.A., LEMITI M., Thin silicon solar cells with SiОх /SiNx Bragg mirror rear surface reflector, Semiconductor Physics, Quantum Electronics and Optoelectronics 12(4), 2009, pp. 406–411.
  • [10] HEISS W., SCHWARZL T., ROITHER J., SPRINGHOLZ G., AIGLE M., PASCHER H., BIERMANN K., REIMANN K., Epitaxial Bragg mirrors for the mid-infrared and their applications, Progress in Quantum Electronics 25(5–6), 2001, pp. 193–228, DOI: 10.1016/S0079-6727(01)00011-8.
  • [11] WINDT D.L., IMD – software for modeling the optical properties of multilayer films, Computers in Physics 12(4), 1998, pp. 360–370, DOI: 10.1063/1.168689
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72832f0f-37f8-4fd6-a143-89609ec80380
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.