PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regional recovery of gravity anomaly from the inversion of diagonal components of GOCE gravitational tensor: A case study in Ethiopia

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The tensor of gravitation is traceless as the gravitational field of the Earth is harmonic outside the Earth’s surface. Therefore, summation of the 2nd-order horizontal derivatives on its diagonal components should be equal to the radial one but with the opposite sign. The gravity field can be recovered locally from either of them, or even their combination. Here, we use the in-orbit diagonal components of the gravitational tensor measured by the gravity field and steady state ocean circulation explorer (GOCE) mission for recovering gravity anomaly with a resolution of 1°×1° at sea level in Ethiopia. In order to solve the system of equations, derived after discretisation of integral equations, the Tikhonov regularisation is applied and the bias of this regularisation is estimated and removed from the estimated gravity anomalies. The errors of the anomalies are estimated and their significance of recovery from these diagonal components is investigated. Statistically, the difference between the recovered anomalies from each scenario is not significant comparing to their errors. However, their joint inversion of the diagonal components improved the solution by about 1 mGal. Furthermore, the inversion processes are better stabilised when using errors of the input data compared with its exclusion, but at the penalty of degradation in accuracy of the estimates.
Twórcy
autor
  • Department of Engineering Science, University of West, Sweden
  • Addis Ababa University, Addis Ababa Institute of Technology, School of Civil and Environmental Engineering, Addis Ababa, Ethiopia
  • Entoto Observatory and Research Centre, Ethiopian Space Science and Technology Institute, Addis Ababa, Ethiopia
  • Entoto Observatory and Research Centre, Ethiopian Space Science and Technology Institute, Addis Ababa, Ethiopia
Bibliografia
  • Arabelos, D., Tscherning, C.C. (1990). Simulation of regional gravity field recovery from satellite gravity gradiometer data using collocation and FFT, Bull. Geod. 64, 363-382.
  • Arabelos, D., Tscherning, C.C. (1993). Regional recovery of the gravity field from SGG and SST/GPS data using collocation, in: Study of the gravity field determination using gradiometry and GPS, Phase 1, Final report ESA Contract 9877/92/F/FL.
  • Arabelos, D., Tscherning, C.C. (1995). Regional recovery of the gravity field from satellite gradiometer and gravity vector data using collocation, J. Geophys. Res. 100 (B11), 22009-22015.
  • Bastow, I.D., Nyblade, A.A., Stuart, G.W., Rooney, T.O. (2008). Upper mantle seismic structure beneath the Ethiopian hot spot: Rifting at the edge of the African low-velocity anomaly; An electronic journal of the Earth Sciences, Geochemistry, geophysics, Geosystems, 9(12), doi:10.1029/2008GC002107.
  • Brockmann, J. M., Zehentner, N., Hock, E., Pail, R., Loth, I., Mayer-Gurr, T., Schuh, W. D. (2014).
  • EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission; Geophysical Research Letters, Vol 41, No. 22, p. 8089-8099, doi: 10.1002/2014gl061904.
  • Ebinger, C., Ayele, A., Keir, D., Rowland, J., Yirgu, G., Wright, T., Belachew, M., Hamling, I. (2010). Length and Timescales of Rift Faulting and Magma Intrusion: The Afar Rifting Cycle from 2005 to Present; Annu. Rev. Earth Planet. Sci. 38:437-64.
  • Eicker, A. (2008). Gravity Field Refinement by Radial Basis Functions from In-siut Satellite Data, Institut für Geodäsie und Geoinformation, Universität Bonn, Schriftenreihe no. 10.
  • Eicker A., Schall J., Kusche J. (2013). Regional gravity modelling from spaceborne data: case studies with GOCE, Geophys. J. Int., 196:1431–1440, doi: https://doi.org/10.1093/gji/ggt485.
  • ESA. (1999). Gravity Field and Steady-State Ocean Circulation Mission, ESA SP-1233(1), Report for mission selection of the four candidate earth explorer missions. ESA Publications Division, July 1999, p. 217.
  • Eshagh, M. (2011a). On integral approach to regional gravity field modelling from satellite gradiometric data, Acta Geophys. 59, 29-54.
  • Eshagh, M. (2011b). Inversion of satellite gradiometry data using statistically modified integral formulas for local gravity field recovery, Adv. Space Res. 47(1), 74-85.
  • Eshagh, M. (2011c). The effect of spatial truncation error on integral inversion of satellite gravity gradiometry data, Adv. Space Res., 47, 1238-1247.
  • Eshagh, M. (2012). Spectral Combination of Spherical Gradiometric Boundary-Value Problems: A Theoretical Study, Pure Appl. Geophys., 169, 2201-2215.
  • Eshagh, M. and Ghorbannia M. (2013). The use of Gaussian equations of motions of a satellite for local gravity anomaly recovery, Adv. Space Res. 52, 1, 30-38.
  • Eshagh M, Ghorbannia M. (2014). The effect of the spatial truncation error on the variance of gravity anomalies derived from inversion of satellite orbital and gradiometric data. Advances in Space Research 54: 261-271.
  • Eshagh, M., Sjöberg L.E. (2011). Determination of gravity anomaly at sea level from inversion of satellite gravity gradiometric data, J. Geodyn., 51, 366-377.
  • Eshagh, M., Lemoine J.M., Gegout P., Biancale R. (2013). On regularized time varying gravity field models based on GRACE data and their comparison with hydrological models, Acta Geophys. 61, 1, 1-17.
  • Furman, T., J. Bryce, B. Hanan, G. Yirgu, and D. Ayalew (2006). Heads and tails: 30 years of the Afar plume, in The Structure and Evolution of the East African Rift System in the Afar Volcanic Province; edited by G. Yirgu, C. J. Ebinger, and P. K. H. Maguire, Geol. Soc. London Spec. Publ., 259, 95-119.
  • Hansen, P.C. (2007). Regularization Tools version 4.0 for Matlab 7.3, Numerical Algorithms, 46: p. 189-194.
  • Hansen P. C. (2010). Discrete inverse problems: Insight and algorithms. SIAM fundamentals and algorithms series, Philadelphia, USA.
  • Janák, J., Fukuda, Y., Xu, P. (2009). Application of GOCE data for regional gravity field modeling, EPS 61, 835-843.
  • Janák, J., Pitoák, M. & Minarechová, Z. (2014). Regional quasigeoid from GOCE and terrestrial measurements, Stud. Geophys. Geod., 58, 626-649.
  • Keir, D., I. Hamling, A. Ayele, E. Calais, C. Ebinger, and Wright T. (2014) Evidence for focused magmatic accretion at segment centers from lateral dike injections captured beneath the Red Sea Rift in Afar; Geology, 37, 59-62, doi:10.1130/G25147A.1.
  • Kotsakis, C. (2007). A covariance-adaptive approach for regularized inversion in linear models, Geophys. J. Int. 171, 509-522.
  • Krarup, T. (1969). A contribution to the mathematical foundation of physical geodesy. Danish Geodetic Institute, Copenhagen, vol 44.
  • Moritz H. (2000). Geodetic Reference System 1980. Journal of Geodesy 74: 128-162.
  • Naeimi M., Bouman J. (2017). Contribution of the GOCE gradiometer components to regional gravity solutions, Geophys. J. Int., 209:559-569, doi: https://doi.org/10.1093/gji/ggx040.
  • Pitoňák, M., Šprlák, M., Novák, P., Tenzer, R., (2016a). Regional gravity field modelling from GOCE observables, Advances in Space Research, doi: http://dx.doi.org/10.1016/j.asr.2016.09.024.
  • Pitoňák, M., Šprlák, M., Hamáčková, E. & Novák, P. (2016b). Regional recovery of the disturbing gravitational potential by inverting satellite gravitational gradients, Geophys. J. Int., 205, 89-98.
  • Pitoňák, M., Šprlák, M., Tenzer, R. (2017). Possibilities of inversion of satellite third-order gravitational tensor on to gravity anomaly: a case study for central Europe, Geophys. J. Int., 209, 799-812.
  • Reed, G.B. (1973). Application of kinematical geodesy for determining the shorts wavelength component of the gravity field by satellite gradiometry, Ohio state University, Dept. of Geod. Science, Rep. No. 201, Columbus, Ohio.
  • Sebera J, Pitoňák M, Hamáčková E, Novák P. (2015). Comparative study of the spherical downward continuation. Surveys in Geophysics 36: 253-267.
  • Seeber, G. (2003). Satellite Geodesy: foundations, methods and applications, Walter de Gruyter GmbH & Co. KG, Berlin.
  • Sharifi, M. A., Romeshkani, M., Tenzer, R. (2017). On inversion of the second- and third-order gravitational tensors by Stokes’ integral formula for a regional gravity recovery, Stud. Geophys. Geod. 61, 453-468.
  • Sjöberg L.E. and Eshagh M. (2012). A theory on geoid modeling by spectral combination of data from satellite gravity gradiometry, terrestrial gravity and an Earth gravitational model, Acta Geod. Geophys. Hung., 47, 1, 13-28.
  • Šprlák, M. and Novák, P. (2014) Integral transformations of gradiometric data onto GRACE type of observable, J Geod. 88, 4, 377-390.
  • Šprlák, M., Sebera, J., Val’ko, M., Novák, P. (2014) Spherical integral formulas for upward/downward continuation of gravitational gradients onto gravitational gradients, J Geod., 88, 2, 179-197.
  • Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and regularization method, Soviet Math. Dokl., 4: 1035-1038, English translation of Dokl. Akad. Nauk. SSSR, 151, 501-504.
  • Tóth, G, Földváry, L., Tziavos, I. N., Ádám J. (2004). Upward / downward continuation of gravity gradients for precise geoid determination, In: Proceedings of The 2nd International GOCE User Workshop: GOCE, The Geoid and Oceanography. Frascati, Italy, 2004.03.08-2004.03.10. 2004. pp. 249-254. Vol. SP-569.
  • Tscherning, C.C. (1988). A study of satellite altitude influence on the sensitivity of gravity gradiometer measurements. DGK, Reihe B, Heft Nr. 287 (Festschrift R. Sigl), pp.218-223, Muenchen. 73.
  • Tscherning, C.C. (1989) A local study of the influence of sampling rate, number of observed components and instrument noise on 1 deg. mean geoid and gravity anomalies determined from satellite gravity gradiometer measurements. Ric. Geod. Topo. Foto. 5, 139-146.
  • Tscherning, C.C., Forsberg, R., Vermeer, M. (1990). Methods for regional gravity field modelling from SST and SGG data. Reports of the Finnish Geodetic Institute, No. 90:2, Helsinki.
  • Wolfenden, E., C. Ebinger, G. Yirgu, A. Deino, and D. Ayalew (2004). Evolution of the northern Main Ethiopian Rift: Birth of a triple junction, Earth Planet. Sci. Lett., 224, 213-228.
  • Xu, P. (1992). Determination of surface gravity anomalies using gradiometric observables, Geophys. J. Int. 110, 321-332.
  • Xu, P. (1998). Truncated SVD methods for discrete linear ill-posed problems, Geophys. J. Int. 135, 505-514.
  • Xu, P. (2009). Iterative generalized cross-validation for fusing heteroscedastic data of inverse illposed problems, Geophys. J. Int. 179, 182-200.
  • Xu, P., Shen, Y., Fukuda, Y. and Liu, Y. (2006). Variance component estimation in linear inverse ill-posed models. J Geod. 80, 69-81.
  • Yildiz, H. (2012) A study of regional gravity field recovery from GOCE vertical gravity gradient data in the Auvergne test area using collocation, Stud. Geophys. Geod. 56, 171-184.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7282b07d-1816-498b-8cab-04fbd9d0b579
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.