PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stabilization of Lateritic Soil using Fly Ash Based Geopolymer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Current development consists of a high-rise building and heavy traffic load demands for soil with good engineering properties. Lateritic soil is commonly treated with Ordinary Portland Cement (OPC) to improve its engineering properties in order to enhance its load bearing capacity. The production of OPC however emits a large amount of carbon dioxide (CO2) into the atmosphere. Geopolymer technology has been explored as an alternative replacement for the OPC. In this research, the unconfined compressive strength (UCS) of a lateritic soil treated with fly ash (FA) based geopolymer up to 40% by weight of the dry soil and activated using combination of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) was investigated by means of unconfined compression test (UCT). The effect of different molarity of NaOH (5-20 M), FA to alkali activator (AA) ratio (1-3) and different curing temperatures to the UCS of treated soil sample are being determined. In general, as the content of FA in the soil increases, the UCS increases more than 100% and almost 400% compared to the untreated soil for room curing temperature and oven curing temperature respectively. Based on the scanning electron microscopy (SEM) result, the molarity of NaOH solution reduces the pores in the treated soil sample. The geopolymerization process combines the soil particle and makes it denser, resulting in higher UCS than the untreated soil sample.
Twórcy
  • Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering & Technology, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering & Technology, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering & Technology, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering & Technology, Perlis, Malaysia
  • Universiti Sains Malaysia, School of Housing, Building and Planning, Gelugor, 11800, Penang, Malaysia
  • Gheorghe Asachi Technical University of Iasi, Faculty of Material Science and Engineering, 41 D. Mangeron St., 700050 Iasi, Romania
Bibliografia
  • [1] E. Mengue, H. Mroueh, L. Lancelot, R. Medjo Eko, Physico-chemical and Consolidation Properties of Compacted Lateritic Soil Treated with Cement. Soils Found. 57 (1), 60-79 (2017). DOI: https://doi.org/10.1016/j.sandf.2017.01.005
  • [2] N.A. Wahab, M.J. Roshan, A.S.A. Rashid, M.A. Hezmi, S.N. Jusoh, N.N. Nik Daud, S. Tamassoki, Strength and Durability of Cement-Treated Lateritic Soil. Sustainability (Basel). 13 (11), 6430 (2021). DOI: https://doi.org/10.3390/su13116430
  • [3] O. Olumide, P. Oregbe, V. Bhushan, O. Oladapo, Eco-friendly Stabilization of Highway Lateritic Soil with Cow Bone Powder Admixed Lime and Plastic Granules Reinforcement. Cleaner Waste Systems 2, 100012 (2022). DOI: https://doi.org/10.1016/j.clwas.2022.100012
  • [4] I. Phummiphan, S. Horpibulsuk, P. Sukmak, A. Chinkulkijniwat, A. Arulrajah, S.L. Shen, Stabilisation of Marginal Lateritic Soil Using High Calcium Fly Ash-Based Geopolymer. Road Mater. Pavement. 17 (4), 877-891 (2016). DOI: https://doi.org/10.1080/14680629.2015.1132632
  • [5] I. Phummiphan, S. Horpibulsuk, T. Phoo-ngernkham, A. Arulrajah, S.L. Shen, Marginal Lateritic Soil Stabilized with Calcium Carbide Residue and Fly Ash Geopolymers as a Sustainable Pavement Base Material. J. Mater. Civil Eng. 29 (2), 1-10 (2017). DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0001708
  • [6] A.S. Muntohar, A. Widianti, E. Hartono, W. Diana, Engineering Properties of Silty Soil Stabilized with Lime and Rice Husk Ash and Reinforced with Waste Plastic Fiber. J. Mater. Civil Eng. 25 (9), 1260-1270 (2013). DOI: https://doi.org/ 10.1061/(asce)mt.1943-5533.0000659
  • [7] P.A. Padalkar, T.A. Kulkarni, C.G. Joshi, Study on Properties of Lateritic Soil Using Fly Ash and Coir Fibers. Int. J. Adv. Res. Sci. Eng. 6, 2319-8354 (2017).
  • [8] P. Sudla, S. Horpibulsuk, A. Chinkulkijniwat, A. Arulrajah, M.D. Liu, M. Hoy, Marginal Lateritic Soil/Crushed Slag Blends as an Engineering Fill Material. Soils Found. 58 (3), 786-795 (2018). DOI: https://doi.org/10.1016/j.sandf.2018.03.007
  • [9] T. Tesanasin, C. Suksiripattanapong, B. Van Duc, Case Studies in Construction Materials Engineering Properties of Marginal Lateritic Soil Stabilized with One-Part High Calcium Fly Ash Geopolymer as Pavement Materials. Case Studies in Construction Materials 17, e01328 (2022). DOI: https://doi.org/10.1016/j.cscm.2022.e01328
  • [10] S. Caro, J.P. Agudelo, B. Caicedo, L.F. Orozco, F. Patiño, N. Rodado, Advanced Characterisation of Cement-Stabilised Lateritic Soils to be Used as Road Materials. Int. J. Pavement Eng. 20 (12), 1425-1434 (2019). DOI: https://doi.org/ 10.1080/10298436.2018.1430893
  • [11] A.S.A. Rashid, N. Latifi, C.L. Meehan, K.N. Manahiloh, Sustainable Improvement of Tropical Residual Soil Using an Environmentally Friendly Additive. Geotechnical and Geological Engineering 35 (6), 2613-2623 (2017). DOI: https://doi.org/ 10.1007/s10706-017-0265-1
  • [12] A. Chinkulkijniwat, S. Horpibulsuk, Field Strength Development of Repaired Pavement Using the Recycling Technique. Q. J. Eng. Geol. Hydroge. 45 (2), 221-229 (2012). DOI: https://doi.org/10.1144/1470-9236/11-031
  • [13] P. Jamsawang, P. Voottipruex, S. Horpibulsuk, Flexural Strength Characteristics of Compacted Cement-Polypropylene Fiber Sand. J. Mater. Civil Eng. 27 (9), 1-9 (2015). DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0001205
  • [14] W.W.A. Zailani, M.M.A.B. Abdullah, M.F. Arshad, R.A. Razak, M.F.M. Tahir, R.R.M.A. Zainol, M. Nabialek, A.V. Sandu, J.J. Wysłocki, K. Błoch, Characterisation at the Bonding Zone between Fly Ash Based Geo-Polymer Repair Materials (GRM) and Ordinary Portland Cement Concrete (OPCC). Materials 14 (1), 1-14 (2021). DOI: https://doi.org/10.3390/ma14010056
  • [15] G. Radhakrishnan, M. Anjan Kumar, G.V.R.P. Raju, Laboratory Evaluation of the Effects of 3-Chloride Compounds on the Geotechnical Properties of an Expansive Subgrade Soil. Journal of The Institution of Engineers (India): Series A. 98 (4), 477-482 (2017). DOI: https://doi.org/10.1007/s40030-017-0233-z
  • [16] A. Soltani, A. Deng, A. Taheri, Swell-compression Characteristics of a Fiber-Reinforced Expansive Soil. Geotext. Geomembranes 46 (2), 183-189 (2018). DOI: https://doi.org/10.1016/j.geotexmem.2017.11.009
  • [17] M. Ibrahim, W.M.W. Ibrahim, M.M.A.B. Abdullah, M. Nabiałek, R. Putra Jaya, M. Setkit, R. Ahmad, B. Jeż, Synthesis of Metakaolin Based Alkali Activated Materials as an Adsorbent at Different Na2SiO3/NaOh Ratios and Exposing Temperatures for Cu2+ Removal. Materials 16 (3), 1-22 (2021). DOI: https://doi.org/10.3390/ma16031221
  • [18] S.R. Abdila, M.M.A.B. Abdullah, R. Ahmad, S.Z. Abd Rahim, M. Rychta, I. Wnuk, M. Nabiałek, K. Muskalski, M.F. Mohd Tahir, Syafwandi, M. Isardi, M. Gucwa, Evaluation on the Mechanical Properties of Ground Granulated Blast Slag (GGBS) and Fly Ash Stabilized Soil via Geopolymer Process. Materials 14 (11), (2021). DOI: https://doi.org/10.3390/ma14112833
  • [19] S.H. Trinh, Q. Anh, T. Bui, Influencing of Clay and Binder Content on Compression Strength of Soft Soil Stabilized by Geopolymer Based Fly Ash. International Journal of Applied Engineering Research 13 (10), 7954-7958 (2018).
  • [20] C. Teerawattanasuk, P. Voottipruex, Comparison Between Cement and Fly Ash Geopolymer for Stabilized Marginal Lateritic Soil as Road Material. Int. J. Pavement Eng. 20 (11), 1264-1274 (2019). DOI: https://doi.org/ 10.1080/10298436.2017.1402593
  • [21] S. Pongsivasathit, S. Horpibulsuk, S. Piyaphipat, Assessment of Mechanical Properties of Cement Stabilized Soils. Case Stud. Constr. Mater. 11, e00301 (2019). DOI: https://doi.org/10.1016/j.cscm.2019.e00301
  • [22] N. Yong-Sing, L. Yun-Ming, H. Cheng-Yong, M.M.A.B. Abdullah, P. Pakawanit, P. Vizureanu, M.S. Khalid, N. Hui-Teng, H. Yong-Jie, M. Nabialek, P. Pietrusiewicz, S. Garus, W. Sochacki, A. Śliwa, Improvements of Flexural Properties and Thermal Performance in Thin Geopolymer Based on Fly Ash and Ladle Furnace Slag Using Borax Decahydrates. Materials 15 (12), 4178 (2022). DOI: https://doi.org/ 10.3390/ma15124178
  • [23] M.A. Faris, M.M.A.B. Abdullah, R. Muniandy, M.F. Abu Hashim, K. Bloch, B. Jeż, S. Garus, P. Palutkiewicz, N.A. Mohd Mortar, M.F. Ghazali, Comparison of Hook and Straight Steel Fibers Addition on Malaysian Fly Ash-Based Geopolymer Concrete on the Slump, Density, Water Absorption and Mechanical Properties. Materials 14 (5), 1310 (2021). DOI: https://doi.org/10.3390/ma14051310
  • [24] A.A.R. Amer, M.M.A.B. Abdullah, L. Yun-Ming, I.H.A. Aziz, J.J. Wyslocki, M.F. Mohd Tahir, W. Sochacki, S. Garus, J. Gondro, H.A.R. Amer, Optimizing of the Cementitious Composite Matrix by Addition of Steel Wool Fibers (Chopped) Based on Physical and Mechanical Analysis. Materials 14 (5), 1094 (2021). DOI: https://doi.org/10.3390/ma14051094
  • [25] A. Sagastume Gutiérrez, J. Van Caneghem, J.B. Cogollos Martínez, C. Vandecasteele, Evaluation of the Environmental Performance of Lime Production in Cuba. J. Clean. Prod. 31, 26-136 (2012). DOI: https://doi.org/10.1016/j.jclepro.2012.02.035
  • [26] E.H. Tan, E.M.M. Zahran, S.J. Tan, A Review of Chemical Stabilisation in Road Construction. IOP Conference Series: Materials Science and Engineering 943 (1), (2020). DOI: https://doi.org/10.1088/1757-899x/943/1/012005
  • [27] R. Zhang, M. Long, J. Zheng, Comparison of Environmental Impacts of Two Alternative Stabilization Techniques on Expansive Soil Slopes. Adv. Civ. Eng. 2019, (2019). DOI: https://doi.org/10.1155/2019/9454929
  • [28] A.A. Firoozi, C. Guney Olgun, A.A. Firoozi, M.S. Baghini, Fundamentals of Soil Stabilization. International Journal of Geo-Engineering 8 (1), (2017). DOI: https://doi.org/10.1186/s40703-017-0064-9
  • [29] W. Prachasaree, S. Limkatanyu, A. Hawa, P. Sukontasukkul, P. Chindaprasirt, Development of Strength Prediction Models for Fly Ash Based Geopolymer Concrete. J. Build. Eng. 32, 101704 (2020). DOI: https://doi.org/10.1016/j.jobe.2020.101704
  • [30] P. Yoosuk, C. Suksiripattanapong, P. Sukontasukkul, P. Chindaprasirt, Properties of Polypropylene Fiber Reinforced Cellular Lightweight High Calcium Fly Ash Geopolymer Mortar. Case Stud. Constr. Mater. 15, e00730 (2021). DOI: https://doi.org/10.1016/j.cscm.2021.e00730
  • [31] O.E. Oluwatuyi, O.O. Ojuri, A. Khoshghalb, Cement-Lime Stabilization of Crude Oil Contaminated Kaolin Clay. Journal of Rock Mechanics and Geotechnical Engineering 12 (1), 160-167 (2020). DOI: https://doi.org/10.1016/j.jrmge.2019.07.010
  • [32] S. Alsafi, N. Farzadnia, A. Asadi, B.K. Huat, Collapsibility Potential of Gypseous Soil Stabilized with Fly Ash Geopolymer; Characterization and Assessment. Constr. Build. Mater. 137, 390-409 (2017). DOI: https://doi.org/10.1016/j.conbuildmat.2017.01.079
  • [33] K. Onyelowe, D. Bui Van, Structural Analysis of Consolidation Settlement Behaviour of Soil Treated with Alternative Cementing Materials for Foundation Purposes. Environmental Technology and Innovation 11, 125-141 (2018). DOI: https://doi.org/10.1016/j.eti.2018.05.005
  • [34] P. Ghadir, N. Ranjbar, Clayey Soil Stabilization Using Geopolymer and Portland Cement. Constr. Build. Mater. 188, 361-371 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.207
  • [35] M. Pourabbas Bilondi, M.M. Toufigh, V. Toufigh, Experimental Investigation of Using a Recycled Glass Powder-Based Geopolymer to Improve the Mechanical Behavior of Clay Soils. Constr. Build. Mater. 170, 302-313 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.049
  • [36] C. Suksiripattanapong, S. Horpibulsuk, C. Yeanyong, A. Arulrajah, Evaluation of Polyvinyl Alcohol and High Calcium Fly Ash Based Geopolymer for the Improvement of Soft Bangkok Clay. Transportation Geotechnics 7, 100476 (2021). DOI: https://doi.org/10.1016/j.trgeo.2020.100476
  • [37] M. Salimi, A. Ghorbani, Mechanical and Compressibility Characteristics of a Soft Clay Stabilized by Slag-Based Mixtures and Geopolymers. Appl. Clay Sci. 184, 105390 (2020). DOI: https://doi.org/10.1016/j.clay.2019.105390
  • [38] A. Arulrajah, T.A. Kua, C. Suksiripattanapong, S. Horpibulsuk, J.S. Shen, Compressive Strength and Microstructural Properties of Spent Coffee Grounds-Bagasse Ash Based Geopolymers with Slag Supplements. J. Clean. Prod. 162, 1491-1501 (2017). DOI: https://doi.org/10.1016/j.jclepro.2017.06.171
  • [39] M.H. Yazid, M.A. Faris, M.M.A.B. Abdullah, M. Nabiałek, S.Z.A. Rahim, M.A.A.M. Salleh, M. Kheimi, A.V. Sandu, A. Rylski, B. Jeż, Contribution of Interfacial Bonding towards Geopolymers Properties in Geopolymers Reinforced Fibers: A Review. Materials 15 (4), 1496 (2022). DOI: https://doi.org/10.3390/ma15041496
  • [40] A. L. Murmu, N. Dhole, A. Patel, Stabilisation of Black Cotton Soil for Subgrade Application Using Fly Ash Geopolymer. Road Mater. Pavement Design 21 (3), 867-8852 (2020). DOI: https://doi.org/10.1080/14680629.2018.1530131
  • [41] Z. Luo, B. Zhang, J. Zou, B. Luo, Sulfate Erosion Resistance of Slag-Fly Ash Based Geopolymer Stabilized Soft Soil Under Semi-Immersion Condition. Case Studies in Construction Materials 17, e01506 (2022). DOI: https://doi.org/10.1016/j.cscm.2022.e01506
  • [42] B. Singh, G. Ishwarya, M. Gupta, S.K. Bhattacharyya, Geopolymer Concrete: A Review of Some Recent Developments. Constr. Build. Mater. 85, 78-90 (2015). DOI: https://doi.org/10.1016/j.conbuildmat.2015.03.036
  • [43] G. Vikas, T.D.G. Rao, Setting Time, Workability and Strength Properties of Alkali Activated Fly Ash and Slag Based Geopolymer Concrete Activated with High Silica Modulus Water Glass. IJST-T Civ. Eng. 45 (3), 1483-1492 (2021). DOI: https://doi.org/10.1007/s40996-021-00598-8
  • [44] C. Phetchuay, S. Horpibulsuk, A. Arulrajah, C. Suksiripattanapong, A. Udomchai, Strength Development in Soft Marine Clay Stabilized by Fly Ash and Calcium Carbide Residue Based Geopolymer. Appl. Clay Sci. 127-128, 134-142 (2016). DOI: https://doi.org/10.1016/j.clay.2016.04.005
  • [45] British Standards Institution, BS 1377-7:1990 Methods of test for soils for civil engineering purposes. Part 7: Shear strength tests (total stress). British Standard, (2015).
  • [46] British Standards Institution, BS 1377-2:1990 Methods of test for soils for civil engineering purposes. Part 2: Classification tests. British Standard, (2010).
  • [47] C. Suksiripattanapong, S. Horpibulsuk, P. Chanprasert, P. Sukmak, A. Arulrajah, Compressive Strength Development in Fly Ash Geopolymer Masonry Units Manufactured from Water Treatment Sludge. Constr. Build. Mater. 82, 20-30 (2015). DOI: https://doi.org/10.1016/j.conbuildmat.2015.02.040
  • [48] X. Guo, H. Shi, W.A. Dick, Compressive Strength and Microstructural Characteristics of Class C Fly Ash Geopolymer. Cement Concrete Comp. 32 (2), 142-147 (2010). DOI: https://doi.org/10.1016/j.cemconcomp.2009.11.003
  • [49] A.l. Murmu, A. Jain, A. Patel, Mechanical Properties of Alkali Activated Fly Ash Geopolymer Stabilized Expansive Clay. KSCE J. Civ. Eng. 23 (9), 3875-3888 (2019). DOI: https://doi.org/10.1007/s12205-019-2251-z
  • [50] P. Sargent, The development of alkali-activated mixtures for soil stabilisation. in: F. Pacheco-Torgal, J.A. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasirt, Handbook of Alkali-Activated Cements, Mortars and Concretes 2015, Woodhead Publishing (2015).
  • [51] S. Sukprasert, M. Hoy, S. Horpibulsuk, A. Arulrajah, A.S.A. Rashid, R. Nazir, Fly Ash Based Geopolymer Stabilisation of Silty Clay/Blast Furnace Slag for Subgrade Applications. Road Mater. Pavement Design 22 (2), 357-371 (2021). DOI: https://doi.org/10.1080/14680629.2019.1621190
  • [52] I. Ismail, S.A. Bernal, J.L. Provis, R. San Nicolas, S. Hamdan, J.S.J. Van Deventer, Modification of Phase Evolution in Alkali-Activated Blast Furnace Slag by the Incorporation of Fly Ash. Cement Concrete Comp. 45, 125-135 (2014). DOI: https://doi.org/10.1016/j.cemconcomp.2013.09.006
  • [53] P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, U. Rattanasak, Comparative Study on the Characteristics of Fly Ash and Bottom Ash Geopolymers. Waste Manage. 29 (2), 539-543 (2009). DOI: https://doi.org/10.1016/j.wasman.2008.06.023
  • [54] S. Hanjitsuwan, S. Hunpratub, P. Thongbai, S. Maensiri, V. Sata, P. Chindaprasirt, Effects of NaOH Concentrations on Physical and Electrical Properties of High Calcium Fly Ash Geopolymer Paste. Cement Concrete Comp. 45, 9-14 (2014). DOI: https://doi.org/10.1016/j.cemconcomp.2013.09.012
Uwagi
The author would like to acknowledge the support from the Fundamental Research Grant Scheme (FRGS) under a grant number of FRGS/1/2020/TK0/UNIMAP/03/1 from the Ministry of Education Malaysia.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-727b4fc2-63a5-4534-ab79-9eba7014aeb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.