PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Last stage of Variscan granitoid magmatism in the Strzelin Massif (SW Poland) : petrology and age of the biotite-muscovite granites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New petrographic and geochemical data show some differences between Variscan Bt-Ms granites occurring either as small plutons or dykes in the Strzelin Massif (SW Poland). The granites of the Gromnik and Górka Sobocka plutons are rich in micas and crystallized from "wet" magmas; the granites in the dykes and in the Gębczyce pluton are mica-poorer and cordierite-bearing rocks, derived from “dryer” magmas. The lower initial eNd values in the Bt-Ms granites of the dykes, compared with those in the plutons, reflect a more "crustal" signature of the former, possibly due to local crustal assimilation, via AFC, shortly before emplacement. Much more radiogenic initial 87Sr/86Sr ratios in the dykes, up to 0.726, further suggest the involvement of extraneous, hydrous crustal fluids enriched in 87Sr during the evolution of late-stage magma derivatives. The new U-Pb SHRIMP zircon age of 296 ± 6 Ma for the Gębczyce Bt-Ms granite shows that this body belongs to the third stage of magmatism in the Strzelin Massif. The U-Pb SHRIMP zircon data for the Bt-Ms granite dykes provide ages similar to those of their host rocks: c. 295 Ma for the Gęsiniec tonalite and the enclosed Bt-Ms granite, and c. 285 Ma for the Strzelin biotite granite and its Bt-Ms granite dykes. These new data from peraluminous rock-types complement our previous studies focused on the tonalites, granodiorites and biotite granites, and shed light on the late-stage igneous evolution of the Strzelin Massif.
Rocznik
Strony
718--737
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr.
Twórcy
  • Univer sity of Wrocław, Institute of Geological Sciences, Plac M. Borna 9, 50-204 Wrocław, Poland
autor
  • Univer sity of Wrocław, Institute of Geological Sciences, Plac M. Borna 9, 50-204 Wrocław, Poland
autor
  • Université Blaise Pascal, Département de Géologie, CNRS, 5 rue Kessler, 63038 Clermont-Ferrand, Cedex, France
Bibliografia
  • 1. Badura, J., 1979. Szczegółowa Mapa Geologiczna Sudetów, arkusz Stolec 1:25 000 (in Polish). Wyd. Geol., Warszawa.
  • 2. Bereś, B., 1969. Petrography of granite of the environments of Strzelin (in Polish with English summary). Archiwum Mineralogiczne, 28: 5-105.
  • 3. Białek, D., 2014. SHRIMP U-Pb zircon geochronology of the Jawornik granitoids (West Sudetes, Poland). Geologia Sudetica, 42: 4.
  • 4. Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C., 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200: 155-170.
  • 5. Chappell, B.W., White, A.J.R., Williams, I.S., Wyborn, D., 2004. Low- and high-temperature granites. Transactions of the Royal Society of Edinburgh: Earth Sciences, 95/1-2: 125-140.
  • 6. Clarke, D.B., 1995. Cordierite in felsic igneous rocks: a synthesis. Mineralogical Magazine, 59: 311-325.
  • 7. De Paolo, J., 1981a. Neodymium isotopes in the Colorado Front Range and crust - mantle evolution in the Proterozoic. Nature, 291: 193-196.
  • 8. De Paolo, J., 1981b. A Nd and Sr isotopic study of Mesozoic calc-alkaline batholiths of the Sierra Nevada and Peninsuiar Ranges, California. Journal of Geophysical Research, 86:10370-10488.
  • 9. Flood, R.H., Shaw, S.E., 2014. Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia: Pressure quench cumulates. Lithos, 198-199: 92-102.
  • 10. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 11: 2033-2048.
  • 11. Haskin, L.A., Haskin, M.A., Frey, F.A., Wildman, T.R., 1968. Relative and absolute terrestrial abundances of the rare earths. In: Origin and Distribution of the Elements (ed. L.H. Ahrens), Pergamon, Oxford, 1: 889-911.
  • 12. Huang, W.L., Wyllie, P.J., 1973. Melting relations of muscovite granite to 35 kbar as a model for fusion metamorphosed subducted oceanic sediments. Contributions to Mineralogy and Petrology, 42: 1-14.
  • 13. Irber, W., 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63: 489-508.
  • 14. Johannes, W., Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer, Berlin.
  • 15. Klimas, K., 2008. Geochronology and petrogenetical study of zircons from selected crystaline rocks in the eastern part of the Fore-Sudetic Block (in Polish with English summary). Uniwersytet Wrocławski, Instytut Nauk Geologicznych, Wrocław.
  • 16. Klimas, K., Kryza, R., Fanning, C.M., 2009. Palaeoto Mesoproterozoic inheritance and Ediacaran anatexis recorded in gneisses at the NE margin of the Bohemian Massif: SHRIMP zircon data from the Nowolesie gneiss, Fore-Sudetic Block (SW Poland). Geologia Sudetica, 41: 25-40.
  • 17. Kryza, R., Fanning, C.M., 2007. Devonian deep-crustal metamorphism and exhumation in the Variscan Orogen: evidence from SHRIMP zircon ages from the HT-HP granulites and migmatites of the Góry Sowie (Polish Sudetes). Geodinamica Acta, 20: 159-175.
  • 18. Kryza, R., Crowley, Q.G., Larionov, A., Pin, C., Oberc-Dziedzic, T., Mochnacka, K., 2012. Chemical abrasion applied to SHRIMP zircon geochronology: an example from the Variscan Karkonosze Granite (Sudetes, SW Poland). Gondwana Research, 21: 757-767.
  • 19. Kryza, R., Schaltegger, U., Oberc-Dziedzic, T., Pin, C., Ovtcharova, M., 2014a. Geochronology of a composite granitoid pluton: a high-precision ID-TIMS U-Pb zircon study of the Variscan Karkonosze Granite (SW Poland). International Journal of Earth Sciences, 103: 683-696.
  • 20. Kryza, R., Pin, C., Oberc-Dziedzic, T., Crowley, Q.G., Larionov, A., 2014b. Deciphering the geochronology of a large granitoid pluton (Karkonosze Grani te, SW Poland): an assessment of U-Pb zircon SIMS and Rb-Sr whole-rock dates relative to U-Pb zircon CA-ID-TIMS. International Geology Review, 56: 756-782.
  • 21. Larionov, A.N., Andreichev, V.A., Gee, D.G., 2004. The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite. Geological Society of London Memoirs, 30: 69-74.
  • 22. Laurent, A., Janoušek, V., Magna, T., Schulmann, K., Miková, J., 2014. Petrogenesis and geochronology of a post-orogenic calc-alkaline magmatic association: the Žulová Pluton, Bohemian Massif. Journal of Geosciences, 59: 415-440.
  • 23. Lorenc, M.W., 1987. Cordierite in granitoid rocks of Hercynian massifs of the Cental Sysiem (Extremadura, Spain and Strzelin (Lower Silesia) - a preliminary comparative study (in Polish with English summary). Annales Societatis Geologorum Poloniae, 57: 89-106.
  • 24. Ludwig, K.R., 2005a. SQUID 1.12 A User's Manual. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication: 1-22, http://www.bgc.org/klprogrammenu.html
  • 25. Ludwig, K.R., 2005b. User's Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication: 1-71, http://www.bgc.org/klprogrammenu.html.
  • 26. Mazur, S., Kröner, A., Szczepański, J., Turniak, K., Hanžl, P., Melichar, R., Rodionov, N.V., Paderin, I., Sergeev, S.A., 2010. Single zircon U-Pb ages and geochemistry of granitoid gneisses from SW Poland: evidence for an Avalonian affinity of the Brunian microcontinent. Geological Magazine, 147: 508-526.
  • 27. Miller, C.F., Stoddard, E.F., Bradfish, L.J., Dollase, W.A., 1981. Composition of plutonic muscovite: genetic implications. Canadian Mineralogist, 19: 25-34.
  • 28. Miller, C.F., Meschter, McDowell, S., Mapes, R.W., 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31: 529-532.
  • 29. Morawski, T., Kościówko, H., 1975. Granity rejonu Strzelina i ich kontakty (in Polish). Przewodnik 47 Zjazdu Polskiego Towarzystwa Geologicznego, Warszawa: 181-183.
  • 30. Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38: 757-775.
  • 31. Oberc, J., 1966. Geology of crystalline rocks of the Wzgórza Strzelińskie Hills, Lower Silesia (in Polish with English summary). Studia Geologica Polonica, 20: 1-187.
  • 32. Obere, J., Oberc-Dziedzic, T., Klimas-August, K., 1988. Geological map of the Strzelin Hills (1:25,000) (in Polish) (ed. J. Obere). Instytut Nauk Geologicznych Uniwersytetu Wrocławskiego, Przedsiębiorstwo Geologiczne Wrocław.
  • 33. Oberc-Dziedzic, T., 1991. Geological setting of the Strzelin granitoids (in Polish with English summary). Acta Universitatis Wratislaviensis, 1375, Prace Geologiczno-Mineralogiczne, 29: 295-324.
  • 34. Oberc-Dziedzic, T., Kryza, R., 2012. Late stage Variscan magmatism in the Strzelin Massif (SW Poland): SHRIMP zircon ages of tonalite and Bt-Ms granite of the Gęsiniec intrusion. Geological Quarterly, 56 (2): 225-236.
  • 35. Oberc-Dziedzic, T., Madej, S., 2002. The Variscan overthrust of the Lower Palaeozoic gneiss unit on the Cadomian basement in the Strzelin and Lipowe Hills massifs, Fore-Sudetic Block, SW Poland; is this part of the East-West Sudetes boundary? Geologia Sudetica, 34: 39-58.
  • 36. Oberc-Dziedzic, T., Pin, C., 2000. The granitoids of the Lipowe Hills (Fore-Sudetic Block) and their relationship to the Strzelin granites. Geologia Sudetica, 33: 17-22.
  • 37. Oberc-Dziedzic, T., Pin, C., Duthou, J.L., Couturie, J.P., 1996. Age and origin of the Strzelin granitoids (Fore-Sudetic Block, Poland): 87Rb/86Sr data. Neues Jahrbuch für Mineralogie Abhandlungen, 171: 187-198.
  • 38. Oberc-Dziedzic, T., Kryza, R., Klimas, K., Fanning, M.C., 2003. SHRIMP U/Pb zircon geochronology of the Strzelin gneiss, SW Poland: evidence for a Neoproterozoic thermal event in the Fore-Sudetic Block, Central European Variscides. International Journal of Earth Sciences, 92: 701-711.
  • 39. Oberc-Dziedzic, T., Kryza, R., Klimas, K., Fanning, M.C., Madej, S., 2005. Gneiss protolith ages and tectonic boundaries in the NE part of the Bohemian Massif (Fore-Sudetic Block, SW Poland). Geological Quarterly, 49 (4): 363-378.
  • 40. Oberc-Dziedzic, T., Kryza, R., Pin, C., 2009. The crust beneath the Polish Sudetes: evidence from a gneiss xenolith in Tertiary basanite from Paszowice. Geodinamica Acta, 22: 165-187.
  • 41. Oberc-Dziedzic, T., Kryza, R., Białek, J., 2010. Variscan multistage granitoid magmatism in Brunovistulicum: petrological and SHRIMP U/Pb zircon geochronological evidence from the southern part of the Strzelin Massif, SW Poland. Geological Quarterly, 54 (3): 301-324.
  • 42. Oberc-Dziedzic, T., Kryza, R., Pin, C., Madej, S., 2013. Variscan granitoid plutonism in the Strzelin Massif (SW Poland): petrology and age of the composite Strzelin intrusion. Geological Quarterly, 57 (2): 269-288.
  • 43. Oberc-Dziedzic, T., Kryza, R., Pin, C., 2015. Variscan granitoids related to shear zones and faults: examples from the Central Sudetes (Bohemian Massif) and the Middle Odra Fault Zone. International Journal of Earth Sciences, 104: 1139-1166.
  • 44. Oliver, G.J.H., Corfu, F., Krough, T.E., 1993. U-Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. Journal of the Geological Society, 150: 355-369.
  • 45. Pietranik, A., Koepke, J., 2009. Interactions between dioritic and granodioritic magmas in mingling zones: plagioclase record of mixing, mingling and subsolidus interactions in the Gęsiniec Intrusion, NE Bohemian Massif, SW Poland. Contributions to Mineralogy and Petrology, 158: 17-36.
  • 46. Pietranik, A., Waight, T., 2008. Processes and sources during Late Variscan dioritic-tonalitic magmatism: insights from plagioclase chemistry (Gęsiniec Intrusion, NE Bohemian Massif, Poland). Journal of Petrology, 49: 1619-1645.
  • 47. Pin, C., Santos Zalduegui, J.F., 1997. Sequential separation of light rare earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Analytica Chimica Acta, 339: 79-89.
  • 48. Rudnick, R.J., Gao, S., 2005. Composition of the continental crust. In: The Crust (ed. R.J. Rudnick), Vol. 3 Treatise on Geochemistry (eds. H.D. Holland and K.K. Turekian). Elsevier - Pergamon, Oxford.
  • 49. Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planeiary Science Letters, 26: 207-221.
  • 50. Steiger, R.H., Jäger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planeiary Science Letiers, 36: 359-362.
  • 51. Suess, F.E., 1926. Intrusionstektonik und Wandertektonik im variszischen Gebirge. Borntraeger, Berlin.
  • 52. Thompson, R.N., 1982. British Tertiary volcanic province. Scottish Journal of Geology, 18: 49-107.
  • 53. Turniak, K., Mazur, S., Wysoczański, R., 2000. SHRIMP zircon geochronology and geochemistry of the Orlica-Śnieżnik gneisses (Variscan belt of Central Europe) and their tectonic implications. Geodinamica Acta, 13: 1-20.
  • 54. Turniak, K., Tichomirowa, M., Bombach, K., 2006. Pb-evaporation zircon ages from the Strzelin Massif (SW Poland). Mineralogical Society of Poland Special Papers, 29: 212-215.
  • 55. Turniak, K., Mazur, S., Domańska-Siuda, J., Szuszkiewicz, A., 2014. SHRIMP U-Pb zircon dating for granitoids from the Strzegom-Sobótka Massif, SW Poland: constrains on the initial time of Permo-Mesosoic lithosphere thinning beneath Central Europe. Lithos, 208-209: 415-429.
  • 56. Vernon, R.H., 2004. A Practical Guide to Rock Microstructure. Cambridge University Press.
  • 57. Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64: 295-304.
  • 58. Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185-187.
  • 59. Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J.C., Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19: 1-23.
  • 60. Williams, I.S., 1998. U-Th-Pb Geochronology by ion microprobe. In: Applications in microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology, 7:1-35.
  • 61. Wojnar, B., 1977. The peirography of granite of Górka Sobocka (Fore-Sudetic block) (in Polish with English summary). Acta Universitatis Wratislaviensis, 378, Prace Geologiczno-Mineralogiczne, 6: 139-156.
  • 62. Wójcik, L., 1968. Szczegółowa Mapa Geologiczna Sudetów, arkusz Ciepłowody 1:25 000. Wyd. Geol., Warszawa.
  • 63. Wroński, J., 1973. Szczegółowa Mapa Geologiczna Sudetów, arkusz Ziębice 1:25 000. Wyd. Geol., Warszawa.
  • 64. Žák, J., Verner, K., Sláma, J., Kachlík, V., Chlupáčová, M, 2013. Multistage magma emplacement and progressive strain accumulation in the shallow-level Krkonoše-Jizera plutonic complex, Bohemian Massif. Tectonics, 32: 1493-1512.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-727884aa-1bde-428a-bad1-8295a9f2c4e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.