PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mass reduction method for topology optimisation of a Ti6Al4V part for additive manufacturing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive manufacturing and topology optimization provide new possibilities to produce complex parts. They can be used separately but with joint applications as a mutually reinforcing solution in component development tasks. The results obtained using the design software can be refined even further depending on the specific goal set. This paper deals with mass reduction with stiffness-based topology optimization of a structural component. The effect of different design spaces, load cases, and design parameters were examined. Then, the new part was validated with FEA simulation. After the validation, the part was prepared for 3D metal printing. Based on the research results, we present a methodology that can be used as a solution considering the software’s limitations and the development of the specific component. Applying the methodology developed in the research makes it possible to achieve mass minimization on other parts with a similar method.
Rocznik
Strony
354--360
Opis fizyczny
Bibliogr. 27 poz,. rys., tab.
Twórcy
  • Department of Automotive Technologies, Faculty of Transportation Engineering and Vehicle Engineering
  • Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
Bibliografia
  • 1.Ahmed, S., Gupta, M. K., 2022. Investigations on motorbike frame material and comparative analysis using generative design and topology optimi-zation. Materials Today: Proceedings [online], 2022, 56(3), p. 1440-1446. ISSN 2214-7853. DOI: 10.1016/j.matpr.2021.12.040
  • 2. Alzyod, H., Ficzere, P., 2023. Correlation Between Printing Parameters and Residual Stress in Additive Manufacturing: A Numerical Simulation Approach. Production Engineering Archives, 29(3), 279-287. DOI: 10.30657/pea.2023.29.32
  • 3. Armstrong, M., Mehrabi, H., Naveed, N., 2022. An overview of modern metal additive manufacturing technology. Journal of Manufacturing Processes 84 pp. 1001–1029. DOI: 10.1016/j.jmapro.2022.10.060
  • 4. Calignano, F., Mercurio V., 2023. An overview of the impact of additive man-ufacturing on supply chain, reshoring, and sustainability. Cleaner Lo-gistics and Supply Chain 7, 1-10. DOI: 10.1016/j.clscn.2023.100103
  • 5. Chauhan, P., Sah K., Kaushal, R., 2020. Design, modelling and simulation of suspension geometry for formula student vehicles. Materials Today: Proceedings, 2021, 43(1), p. 17-27. ISSN 2214-7853. DOI: 10.1016/j.matpr.2020.11.200
  • 6. Dhokia, V., Essink, W. P., Flynn, J. M., 2017. A generative multi-agent de-sign methodology for additively manufactured parts inspired by termite nest building. CIRP Annals, 2017, 66(1), p. 153-156. ISSN 0007-8506. DOI: 10.1016/j.cirp.2017.04.039
  • 7. Djokikj, J., Jovanova, J., 2021. Generative design of a large-scale nonhomo-geneous structures. IFAC PapersOnLine. 2021, 54(1), p. 773-779. ISSN 2405-8963. DOI: 10.1016/j.ifacol.2021.08.090
  • 8. Djokikj, J., Kandikjan, T., 2023. DfAM: Application of the design rules in the early design stages. Procedia CIRP 118 (2023) 659-663. DOI: 10.1016/j.procir.2023.06.113
  • 9. Gupta, A., Soni, V., Shah, D., Lakdawala Ab., 2022. Generative design of main landing gear for a remote-controlled aircraft. Materials Today: Proceedings. DOI: 10.1016/j.matpr.2023.01.380
  • 10. Hanush, S. S., Manjaiah, M., 2022. Topology optimization of aerospace part to enhance the performance by additive manufacturing process. Materi-als Today: Proceedings 62, pp. 7373–7378. DOI: 10.1016/j.matpr.2022.02.074
  • 11. Jang, S., Yoo, S., Kang, N., 2022. Generative Design by Reinforcement Learning: Enhancing the Diversity of Topology Optimization Designs. Computer-Aided Design 146 (2022) 103225. DOI: 10.1016/j.cad.2022.103225
  • 12. Junk, S., Burkart, L., 2021. Comparison of CAD systems for generative de-sign for use with additive manufacturing. Procedia CIRP 100 (2021) 577-582. DOI: 10.1016/j.procir.2021.05.126
  • 13. Junk, S., Rothe, N., 2022. Lightweight design of automotive components us-ing generative design with fiber-reinforced additive manufacturing. Pro-cedia CIRP 109 (2022) 119-124. DOI: 10.1016/j.procir.2022.05.224
  • 14. Kaushal, R., Chauhan, P., Sah K., Chawla, V. K., 2021. Design and analysis of wheel assembly and anti-roll bar for formula SAE vehicle. Materials Today: Proceedings. 2021, 43(1), 169-174. ISSN 2214-7853. DOI: 10.1016/j.matpr.2020.11.610
  • 15. Khan, S., Awan, M. J., 2018. A generative design technique for exploring shape variations. Advanced Engineering Informatics. 2018, 38, p. 712-724. ISSN 1474-0346. DOI: 10.1016/j.aei.2018.10.005
  • 16. Ficzere, P., 2022. The Impact of the Positioning of Parts on the Variable Pro-duction Costs in the Case of Additive Manufacturing. Periodica Poly-technica Transportation Engineering, 2022, 50(3), pp. 304-308. DOI: 10.3311/PPtr.15827
  • 17. Kumar, Y., Siddiqui, A., Upadhyay, Y., Prajapati, S., 2022. Kinematic and structural analysis of independent type suspension system with anti-roll bar for formula student vehicle. Materials Today: Proceedings, 2022, 56(5), 2672-2679. ISSN 2214-7853. DOI: 10.1016/j.matpr.2021.09.247
  • 18. Ling, S., Li, W., Zheng, L., Wan, C., Liu Y., 2023. Multidisciplinary collab-orative topology optimization method for perforated plates. Engineering Structures 297 (2023) 116924. DOI: 10.1016/j.engstruct.2023.116924
  • 19. Liu, J., Gaynor, A. T., Chen, S., Kang, Z., Suresh, K., Takezawa, A., Li, L., Kato, J., Tang, J., Wang, C. L., Cheng, L., Liang, X., To A. C., 2018. Current and future trends in topology optimization for additive manu-facturing, Structural and Multidisciplinary Optimization, 2018, 57, p. 2457-2483. ISSN 1615-147X, eISSN 1615-1488. DOI: 10.1007/s00158-018-1994-3
  • 20. Mesicek, J., Pagac, M., Petru, J., Novak, P., Hajnys, J., Kutiova, K., 2019. Topological optimization of the formula student bell crank. MM Sci-ence Journal, 2019, October, p. 2964-2968. ISSN 1803-1269, eISSN 1805-0476. DOI: 10.17973/MMSJ.2019_10_201893
  • 21. Rajput, S., Burde, H., Singh, U. S., Kajaria, H., Bhagchandani, R. K., 2021. Optimization of prosthetic leg using generative design and compliant mechanism. Materials Today: Proceedings. 2021, 46, p. 8708- 8715. ISSN 2214-7853. DOI: 10.1016/j.matpr.2021.04.026
  • 22. Salta, S., Papavasileiou, N., Pyliotis, K., Katsaros, M, 2020. Adaptable emer-gency shelter: a case study in generative design and additive manufac-turing in mass customization era. Procedia Manufacturing, 2020, 44, p. 124-131. ISSN 2351-9789. DOI: 10.1016/j.promfg.2020.02.213
  • 23. Venugopal, V., Anand, S., 2023. Structural and Thermal Generative Design using Reinforcement Learning Based Search Strategy for Additive Manufacturing. Manufacturing Letters 35 (2023) 564-575. DOI: 0.1016/j.mfglet.2023.08.030
  • 24. Vlah, D., Žavbi, R., Vukašinović, N., 2020. Evaluation of topology optimiza-tion and generative design tools as support for conceptual design. Inter-national Design Conference – Design 2020, pp. 451-460 DOI: 10.1017/dsd.2020.165
  • 25. Walton, D., Moztarzadeh, H., 2017. Design and development of an additive manufactured component by topology optimization. Procedia CIRP, 2017, 60, p. 205-210. ISSN 2212-8271. DOI: 10.1016/j.procir.2017.03.027
  • 26. Yi, L., Ehmsen, S., Glatt, M., Aurich, J. C., 2021. A case study on the part optimization using eco-design for additive manufacturing based on en-ergy performance assessment. Procedia CIRP [online], 2021, 96, p. 91-96. ISSN 2212-8271. DOI: 10.1016/j.procir.2021.01.058
  • 27. Zhu, J., Zhou, H., Wang, C., Zhou, L., Yuan, S., Zhang, W., 2021. A review of topology optimization for additive manufacturing. Status and chal-lenges. Chinese Journal of Aeronautics, 34 (1), pp. 91–110. DOI: 10.1016/j.cja.2020.09.020
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72746cef-1b85-4ed0-a862-d2f05e6e2183
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.