PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Equilibrium modeling of mono and binary sorption of Cu(II) and Zn(II) onto chitosan gel beads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the work are in-depth experimental studies of Cu(II) and Zn(II) ion removal on chitosan gel beads from both one- and two-component water solutions at the temperature of 303 K. The optimal process conditions such as: pH value, dose of sorbent and contact time were determined. Based on the optimal process conditions, equilibrium and kinetic studies were carried out. The maximum sorption capacities equaled: 191.25 mg/g and 142.88 mg/g for Cu(II) and Zn(II) ions respectively, when the sorbent dose was 10 g/L and the pH of a solution was 5.0 for both heavy metal ions. One-component sorption equilibrium data were successfully presented for six of the most useful three-parameter equilibrium models: Langmuir-Freundlich, Redlich-Peterson, Sips, Koble-Corrigan, Hill and Toth. Extended forms of Langmuir-Freundlich, Koble-Corrigan and Sips models were also well fitted to the two-component equilibrium data obtained for different ratios of concentrations of Cu(II) and Zn(II) ions (1:1, 1:2, 2:1). Experimental sorption data were described by two kinetic models of the pseudo-first and pseudo-second order. Furthermore, an attempt to explain the mechanisms of the divalent metal ion sorption process on chitosan gel beads was undertaken.
Rocznik
Strony
485--501
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Department of Chemical Engineering and Environmental Protection Processes, Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Department of Chemical Engineering and Environmental Protection Processes, Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Department of Chemical Engineering and Environmental Protection Processes, Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Al-Asheh S., Banat F., Al-Omari R., Duvnjak Z., 2000. Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data. Chemosphere, 41, 59 - 665. DOI: 10.1016/S0045-6535(99)00497-X.
  • 2. Alimohamadi M., Abolhamd G., Keshtkar A., 2005. Pb(II) and Cu(II) biosorption on Rhizopus arrhizus modeling mono- and multi-component systems. Miner. Eng., 18, 1325-1330. DOI: 10.1016/j.mineng.2005.08.007.
  • 3. Allen S.J., Mckay G., Porter J.F., 2004. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interf. Sci., 280, 322–333. DOI: 10.1016/j.jcis.2004.08.078.
  • 4. Baran A., Biçak E., Baysal S.H., Önal S., 2006. Comparative studies on the adsorption of Cr(VI) ions on to various sorbents. Bioresource Technol., 98, 661–665. DOI: 10.1016/j.biortech.2006.02.020.
  • 5. Chen A.H., Liu S.C., Chen C.Y., Chen C.Y., 2008. Comparative adsorption of Cu(II), Zn(II) and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J. Hazard. Mater., 154, 184-191. DOI: 10.1016/j.jhazmat.2007.10.009.
  • 6. Chen C., 2013. Evaluation of equilibrium sorption isotherm equations. The Open Chem. Eng. J., 7, 24-44. DOI: 10.2174/1874123101307010024.
  • 7. Corrigan T.E, Koble R.A., 1952. Adsorption isotherm for pure hydrocarbons. Ind. Eng. Chem., 44, 383–387. DOI: 10.1021/ie50506a049.
  • 8. Hamdaoui O., Naffrechoux E., 2007. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part II. Models with more than two parameters. J. Hazard. Mater., 147, 401–411. DOI: 10.1016/j.jhazmat.2007.01.023.
  • 9. Han R., Zhang J., Zou W., Shi H., Liu H., 2005. Equlibrium biosorption isotherm for lead ion on chaff. J. Hazard Mater., B125, 266-271. DOI: 10.1016/j.jhazmat.2005.05.031.
  • 10. Hasan S., Ghosh T. K., Viswanath D. S, Boddu V. M., 2008. Dispersion of chitosan on perlite for enhancement of copper(II) adsorption capacity. J. Hazard. Mater., 152, 826-837. DOI: 10.1016/j.jhazmat.2007.07.078.
  • 11. Ho Y. S., McKay G., 1999. Pseudo-second order model for sorption process. Process Biochem., 34, 451-465. DOI: 10.1016/S0032-9592(98)00112-5.
  • 12. Jha I.N., Iyengar L., Prabhakara-Rao A.V.S., 1987. Removal of cadmium using chitosan. J. Environ. Eng., 114, 963-674. DOI: 10.1061/(ASCE)0733-9372(1988)114:4(962).
  • 13. Jin L., Bai R., 2002. Mechanisms of lead adsorption on chitosan/PVA hydrogen beads. Langmuir, 18, 9765-9770. DOI: 10.1021/la025917l.
  • 14. Kousalya G.N., Gandhi M. R., Meenakshi S., 2010. Sorption of chromium(VI) using modified forms of chitosan beads. Int. J. Biol. Macromol., 47, 308–315. DOI: 10.1016/j.ijbiomac.2010.03.010.
  • 15. Kyzas G.Z., Bikiaris D.N., 2015. Recent modifications of chitosan for adsorption applications: A critical and systematic review. Marine Drugs, 13, 312–337. DOI: 10.3390/md13010312.
  • 16. Lodeiro P., Cordero B., Barriada J.L., Herrero R., Sastre de Vincente M.E., 2005. Biosorption of cadmium by biomass of brown marine microalgae. Bioresource Technol., 96, 1796-1803. DOI: 10.1016/j.biortech.2005.01.002.
  • 17. Nastaj J., 2013. Modelowanie wybranych procesów adsorpcyjnych i biosorpcyjnych w ochronie środowiska. Bel Studio, Warszawa.
  • 18. Norton L., Baskaran K., McKenzie T., 2004. Biosorption of zinc from aqueous solutions using biosolids. Adv. Environ. Res., 8, 629–635. DOI: 10.1016/S1093-0191(03)00035-2.
  • 19. Onsosyen E., Skaugrud O., 1990. Metal recovery using chitosan. J. Chem. Technol. Biotechnol., 49, 395-404. DOI: 10.1002/jctb.280490410.
  • 20. Osifo P.O., Webster A., van der Merwe H., Neomagus H.W., van der Gun M.A., Grant D.M., 2008. The influence of the degree of cross-linking on the adsorption properties of chitosan beads. Bioresource Technol., 99, 7377-7382. DOI: 10.1016/j.biortech.2008.01.053.
  • 21. Oyrton A., Monteiro J., Airoldi C., 1999. Some thermodynamic data on copper-chitin and copper-chitosan biopolymer interactions. J. Colloid Interf. Sci., 212, 212-219. DOI: 10.1006/jcis.1998.6063.
  • 22. Qi N., 2003. Adsorption of organic compounds and water vapor on activated carbon: equilibria and fixed-bed humidity steps. PhD Thesis, University of Vanderbilt, Nashville.
  • 23. Repo E., Warchoł J. K., Kurniawan T.A., 2010. Sillanpaa M. E.T., 2010. Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: Kinetic and equilibrium modeling. Chem. Eng. J., 161, 73-82. DOI: 10.1016/j.cej.2010.04.030.
  • 24. Rinaudo M., 2006. Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 31, 603-632. DOI: 10.1016/j.progpolymsci.2006.06.001.
  • 25. Runping H., Wang Y., Hana P., Shi J., Yang J, Yongsen L., 2006. Removal of methylene bluefrom aqueous solution by chaff in batch mode. J. Hazard. Mater., B137, 550–557. DOI: 10.1016/j.jhazmat.2006.02.029.
  • 26. Sankararamakrishnan N., Sharma A.K., Sanghi R., 2007. Novel chitosan derivative for the removal of cadmium in the presence of cyanide from electroplating wastewater. J. Hazard. Mater., 148, 353-359. DOI: 10.1016/j.jhazmat.2007.02.043.
  • 27. Sulaymon A.H., Abbood D.W., Ali A.H., 2011. Competitive adsorption of phenol and lead from synthetic wastewater onto granular activated carbon. J. Environ. Sci. Eng., 5, 1389-1399.
  • 28. Tomczak E., 2013. Water purification from heavy metal ions in a packed column. Sep. Sci. Technol., 48, 15, 2270-2276. DOI: 10.1080/01496395.2013.805224.
  • 29. Veli S., B. Alyuz B., 2007. Adsorption of copper and zinc from aqueous solutions by using natural clay. J. Hazard. Mater., 149, 226–233. DOI: 10.1016/j.jhazmat.2007.04.109.
  • 30. Vieira R.S., Guibal E., Silva E.A., Beppu M.M., 2007. Adsorption and desorption of binary mixtures of copper and mercury ions on natural and crosslinked chitosan membranes. Adsorption, 13, 603–611. DOI: 10.1007/s10450-007-9050-4.
  • 31. Wan Ngah W.S., Ab Ghani S., Kamari A., 2005. Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresour. Technol., 96, 443–450. DOI: 10.1016/j.biortech.2004.05.022.
  • 32. Wan Ngah W.S, Fatinathan S., 2008. Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chem. Eng. J., 143, 1-3, 62-72. DOI: 10.1016/j.cej.2007.12.006.
  • 33. Wang C., Liu J., Zhang Z., Wang B., Sun H., 2012. Adsorption of Cd(II), Ni(II) and Zn(II) by tourmaline at acidic conditions: Kinetic, thermodynamics and mechanism. Ind. Eng. Chem. Res., 51, 4397-4406. DOI: 10.1021/ie2023096.
  • 34. Wang X., Du Y., Liu H., 2004. Preparation, characterization and antimicrobial activity of chitosan-Zn complex. Carbohyd. Polym., 56, 21-26. DOI: 10.1016/j.carbpol.2003.11.007.
  • 35. Wu Z.B., Ni W.M., Guan B.H., 2008. Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process. J. Hazard. Mater., 152, 757–764. DOI: 10.1016/j.jhazmat.2007.07.042.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-726e4383-bc20-42e0-a812-ea42e0beee21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.