PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forced oscillation measurements of seismic attenuation in fluid saturated sandstone

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adopting the method of forced oscillation, attenuation was studied in Fontainebleau sandstone (porosity 10%, permeability 10 mD) at seismic frequencies (1–100 Hz). Confining pressures of 5, 10, and 15 MPa were chosen to simulate reservoir conditions. First, the strain effect on attenuation was investigated in the dry sample for 11 different strains across the range 1 × 10-6–8 × 10−6, at the confining pressure of 5 MPa. The comparison showed that a strain of at least 5 × 10-6 is necessary to obtain a good signal to noise ratio. These results also indicate that nonlinear effects are absent for strains up to 8 × 10-6. For all the confining pressures, attenuation in the dry rock was low, while partial (90%) and full (100%) saturation with water yielded a higher magnitude and frequency dependence of attenuation. The observed high and frequency dependent attenuation was interpreted as being caused by squirt flow.
Czasopismo
Rocznik
Strony
165--172
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • Department of Earth Sciences, ETH, Zurich, Switzerland
autor
  • Institute of Earth Sciences, University of Lausanne, Lausanne Switzerland
autor
  • International Geothermal Centre and Ruhr Universität Bochum, Bochum, Germany
Bibliografia
  • 1. Adam L, Batzle M, Lewallen KT, van Wijk K (2009) Seismic wave attenuation in carbonates. J Geophys Res 114(B6):B06208. doi:10.1029/2008JB005890
  • 2. Batzle ML, Han D-H, Hofmann R (2006) Fluid mobility and frequency-dependent seismic velocity-direct measurements. Geophysics 71(1):N1–N9. doi:10.1190/1.2159053
  • 3. Behura J, Batzle M, Hofmann R, Dorgan J (2007) Heavy oils: their shear story. Geophysics 72(5):E175-E183. doi:10.1190/1.2756600
  • 4. Bourbie T, Zinszner B (1985) Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone. J Geophys Res 90(B13):11524-11532. doi:10.1029/JB090iB13p11524
  • 5. Carcione JM (2007) Wave fields in real media: theory and numerical simulation of wave propagation in anisotropic. Anelastic porous and electromagnetic media. Elsevier, Amsterdam
  • 6. Chapman M, Liu E, Li X (2006) The influence of fluid-sensitive dispersion and attenuation on AVO analysis. Geophys J Int 167(1):89-105. doi:10.1111/j.1365-246X.2006.02919.x
  • 7. Chapman S, Tisato N, Quintal B, Holliger K (2016) Seismic attenuation in partially saturated Berea sandstone submitted to a range of confining pressures. J Geophys Res Solid Earth 121(3):1664-1676. doi:10.1002/2015JB012575
  • 8. Dunn K-J (1987) Sample boundary effect in acoustic attenuation of fluid-saturated porous cylinders. J Acoust Soc Am 81(5):1259-1266. doi:10.1121/1.394529
  • 9. Gardner GHF, Wyllie MRJ, Droschak DM (1964) Effects of pressure and fluid saturation on the attenuation of elastic waves in sands. J Petrol Technol 16(2):189-198. doi:10.2118/721-PA
  • 10. Gurevich B, Makarynska D, de Paula OB, Pervukhina M (2010) A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics 75(6):N109-N120. doi:10.1190/1.3509782
  • 11. Karato S, Spetzler HA (1990) Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Rev Geophys 28(4):399-421. doi:10.1029/RG028i004p00399
  • 12. Lambert M-A, Saenger EH, Quintal B, Schmalholz SM (2013) Numerical simulation of ambient seismic wavefield modification caused by pore-fluid effects in an oil reservoir. Geophysics 78(1):T41-T52. doi:10.1190/GEO2011-0513.1
  • 13. Madonna C, Tisato N (2013) A new seismic wave attenuation module to experimentally measure low-frequency attenuation in extensional mode. Geophys Prospect 61(2):302-314. doi:10.1111/1365-2478.12015
  • 14. Mavko GM, Nur A (1979) Wave attenuation in partially saturated rocks. Geophysics 44(2):161-178. doi:10.1190/1.1440958
  • 15. Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook. Tool for seismic analysis of porous media. Cambridge University Press, Cambridge
  • 16. Mikhaltsevitch V, Lebedev M, Gurevich B (2014) A laboratory study of low-frequency wave dispersion and attenuation in water-saturated sandstones. Leading Edge 33(6):616–618, 620–622. doi:10.1190/tle33060616.1
  • 17. Müller TM, Gurevich B, Lebedev M (2010) Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—A review. Geophysics 75(5):75A147–75A164. doi:10.1190/1.3463417
  • 18. O’Connell RJ, Budiansky B (1978) Measures of dissipation in viscoelastic media. Geophys Res Lett 5(1):5-8. doi:10.1029/GL005i001p00005
  • 19. O’Donnell M, Jaynes ET, Miller JG (1981) Kramers–Kronig relationship between ultrasonic attenuation and phase velocity. J Acoust Soc Am 69(3):696-701. doi:10.1121/1.385566
  • 20. Paterson MS, Olgaard DL (2000) Rock deformation tests to large shear strains in torsion. J Struct Geol 22(9):1341-1358. doi:10.1016/S0191-8141(00)00042-0
  • 21. Pimienta L, Fortin J, Guéguen Y (2015) Bulk modulus dispersion and attenuation in sandstones. Geophysics 80(2):D111-D127. doi:10.1190/geo2014-0335.1
  • 22. Pride SR, Berryman JG, Harris JM (2004) Seismic attenuation due to wave-induced flow. J Geophys Res 109(B1):B01201. doi:10.1029/2003JB002639
  • 23. Spencer JW Jr (1981) Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion. J Geophys Res 86(B3):1803-1812. doi:10.1029/JB086iB03p01803
  • 24. Subramaniyan S, Quintal B, Tisato N, Saenger EH, Madonna C (2014) An overview of laboratory apparatuses to measure seismic attenuation in reservoir rocks. Geophys Prospect 62(6):1211-1223. doi:10.1111/1365-2478.12171
  • 25. Subramaniyan S, Quintal B, Madonna C, Saenger EH (2015) Laboratory-based seismic attenuation in Fontainebleau sandstone: Evidence of squirt flow. J Geophys Res Solid Earth 120(11):7526-7535. doi:10.1002/2015JB012290
  • 26. Tisato N, Quintal B (2013) Measurements of seismic attenuation and transient fluid pressure in partially saturated Berea sandstone: evidence of fluid flow on the mesoscopic scale. Geophys J Int 195(1):342-351. doi:10.1093/gji/ggt259
  • 27. Tisato N, Quintal B (2014) Laboratory measurements of seismic attenuation in sandstone: strain versus fluid saturation effects. Geophysics 79(5):WB9-WB14. doi:10.1190/geo2013-0419.1
  • 28. Toksöz MN, Johnston DH, Timur A (1979) Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics 44(4):681–690. doi:10.1190/1.1440969
  • 29. Usher MJ (1962) Elastic behavior of rocks at lower frequencies. Geophys Prospect 10(2):119-127. doi:10.1111/j.1365-2478.1962.tb02002.x
  • 30. Winkler KW (1983) Frequency dependent ultrasonic properties of high-porosity sandstones. J Geophys Res 88(B11):9493-9499. doi:10.1029/JB088iB11p09493
  • 31. Winkler KW (1985) Dispersion analysis of velocity and attenuation in Berea sandstone. J Geophys Res 90(B8):6793-6800. doi:10.1029/JB090iB08p06793
  • 32. Winkler KW, Nur A (1979) Pore fluids and seismic attenuation in rocks. Geophys Res Lett 6(1):1-4. doi:10.1029/GL006i001p00001
  • 33. Winkler KW, Nur A, Gladwin M (1979) Friction and seismic attenuation in rocks. Nature 277(5697):528-531. doi:10.1038/277528a0
  • 34. Zimmerman RW (1991) Compressibility of sandstones, developments in petroleum science, vol 29. Elsevier Science Publishing Co., Inc., New York
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-726b2cc3-7d15-4c4a-ad01-5dace85ba6dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.