Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In modern machining industry, the use of computer software is an integral element in the design of technological processes. This work aims to present possibilities for optimization of milling operations with the use of commercial software designed especially for that use. A face milling operation of an aluminium flange was chosen for this study. Several different optimization strategies were described and their results shown, analysed and discussed. The effect of variable radial depth of cut on cutting force values in milling processes was reflected upon. Additionally, further research involving comparison of experiment results with simulation was proposed. It was proven that correct optimization strategy can reduce machining time for the analysed face milling operation about 37% without exceeding imposed process parameter constraints.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
69--77
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
- Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Opole, Poland
autor
- Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Opole, Poland
autor
- Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Opole, Poland
autor
- Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Opole, Poland
Bibliografia
- [1] CGTech website http://www.cgtech.com/products/ about-vericut/optipath/
- [2] RATCHEV S., LIU S., HUANG W., BECKER A.A., 2006, An advanced FEA based force induced error compensation strategy in milling, Int. Journal of Machine Tools and Manufacture, 46/5, 542-551.
- [3] LIN Z., FU J., YAO X., SUN Y., 2015, Improving machined surface textures in avoiding five-axis singularities considering tool orientation angle changes, Int. Journal of Machine Tools and Manufacture, 98, 41-49.
- [4] CHEN S.L., WANG W.T., 2001, Computer aided manufacturing technologies for centrifugal compressor impellers, Journal of Materials Processing Technology, 115/3, 284-293.
- [5] NIESLONY P., GRZESIK W., ŻAK K., LASKOWSKI P., 2014, 3D FEM simulations and experimental studies of the turning process of Inconel 718 superalloy, Journal of Machine Engineering, 14, 16-26.
- [6] NIESLONY P., GRZESIK W., BARTOSZUK M., HABRAT W., 2016, Analysis of mechanical characteristics of face milling process of Ti6AI4V alloy using experimental and simulation data, Journal of Machine Engineering, 16/3, 58-66.
- [7] JAYANTI S., MAVULETI K., BECKER B., ERICKSON E., WADELL J., MARUSICH et al., 2012, Modeling of Cutting Forces and Cycle Times for Micromachined Components, Procedia CIRP, 1, 138-143.
- [8] National Center For Defense Manufacturing and Machining, Blairsville, PA, research project “Machining Process Evaluation Using Production Module 3D”, project number 06-0119-10
- [9] Third Wave Systems website http://thirdwavesys.com/wp-content/uploads/2014/06/Bell_Helicopter.pdf
- [10] KRÓLCZYK G., GAJEK M., LEGUTKO S., 2013, Effect of the cutting parameters impact on tool life in duplex stainless steel turning process, Tehnički Vjesnik-Technical Gazette, 20/4, 587-592.
- [11] KOLAR P., FOJTU P., SCHMITZ T., 2015, On cutting force coefficient model with respect to tool geometry and tool wear, Procedia Manufacturing, 708-720.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72683b7f-3262-4793-906d-0c78196286ac