PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lekkie, przeciwzużyciowe materiały funkcjonalne na bazie stopów aluminium

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Niniejsza monografia stanowi zbiór wyników badań oraz przemyśleń autora, stanowiących jego wkład w dziedzinę inżynierii materiałowej, dotyczący zastosowania nowatorskiej metody, łączącej w jednej operacji obróbkę cieplną stopów aluminium wraz z procesem osadzania niskotarciowych i przeciwzużyciowych powłok gradientowych. Obejmuje ona możliwości sterowania rozdrobnieniem i/lub wytworzeniem rdzeniowych faz utwardzających w stopach aluminium 7075 oraz 2024 w trakcie osadzania powłok metodami RFCVD, RFPACVD oraz PLD, z uwzględnieniem wpływu ich budowy molekularnej na adhezję oraz właściwości tribologiczne. Dodatkowo przedstawiony został wpływ między operacyjnej obróbki plastycznej na wielkość i rozkład naprężeń własnych w warstwie wierzchniej materiału poddanego dwustopniowej obróbce cieplnej. Część pierwsza monografii obejmuje rozdziały 1-3 i zawiera opis metod poprawy właściwości mechanicznych stopów aluminium poprzez modyfikację składu chemicznego, zastosowania obróbki plastycznej oraz ich połączenia z uwzględnieniem opisu warunków koniecznych do wytworzenia utwardzających wydzieleń rdzeniowych. W tym etapie badań skupiono się również na różno¬rodnych metodach modyfikacji warstwy wierzchniej stopów aluminium pod kątem poprawy ich właściwości tribologicznych, przy szczególnym uwzględnie¬niu ich wad. W drugiej części, w rozdziałach 5-7, przedstawiono autorskie wyniki badań dotyczące doboru parametrów starzenia komercyjnych stopów aluminium 7075 oraz 2024 (czasu i wartości temperatury poszczególnych etapów starzenia), które to parametry stanowią warunki brzegowe osadzania niskotarciowych i przeciw-zużyciowych powłok. W rozdziale 5 zaprezentowano wyniki badań dotyczące doboru parametrów dwustopniowego starzenia pod kątem możliwości sterowania wielkością tworzących się wydzieleń, a także ich morfologii. Dodatkowo zbadano wpływ warunków procesu dwustopniowego starzenia na możliwość tworzenia utwardza¬jących faz rdzeniowych w fazie ciągłej a aluminium stopu 2024. Wykazano różnice w składzie chemicznym rdzenia i powłoki wydzieleń utwardzających, a co za tym idzie we właściwościach mechanicznych, co ma bezpośredni wpływ na polepszenie właściwości materiału. W przypadku obecności faz rdzeniowych obserwuje się równoczesny wzrost wytrzymałości na zerwanie wraz ze wzrostem wydłużenia przy zrywaniu. W rozdziale 6 przeanalizowano wpływ powierzchniowej obróbki plastycznej -kulowania na kinetykę procesów starzeniowych z uwzględnieniem rozkładu naprężeń własnych oraz mikrotwardości w warstwie wierzchniej badanych stopów aluminium 7075 oraz 2024. W rozdziale 7, w oparciu o parametry dwustopniowego starzenia określone w rozdziale 5, przeprowadzono procesy osadzania gradientowych powłok niskotarciowych i przeciwzużyciowych, z uwzględnieniem fizykochemicznej modyfikacji podłoża pod kątem możliwości polepszenia ich adhezji. W tym przypadku skorelowano budowę molekularną wytworzonych powłok na bazie węgla i/lub krzemu, modyfikowanych wodorem z właściwościami tribologicznymi oraz adhezją do podłoża. Praca zakończona jest rozdziałami 8 i 9, które stanowią podsumowanie opracowanej technologii, dotyczącej wytworzenia lekkich, funkcjonalnych materiałów przeciwzużyciowych i niskotarciowych odpornych na zmęczenie stykowe. Zwrócono także szczególną uwagę na wiążącą w swym założeniu możliwość równoczesnego przebiegu zjawisk wydzieleniowych w podłożu wraz z procesami kreowania Technologicznej Warstwy Wierzchniej, charakteryzu¬jącej się zarówno niskim współczynnikiem tarcia, wysoką odpornością na zużycie, jak i podwyższoną odpornością na zmęczenie stykowe.
EN
The monograph, based on the author’s original research and ideas, is his contribution to the discipline of materials science and engineering. It concerns the application of an innovative method that combines into a single operation heat treatment of aluminum alloys and deposition of low friction wear resistant gradient coatings. It explores possibilities of exerting control over dispersion and/or generation of core shell hardening phases in aluminum alloys 7075 and 2024 during the deposition of coatings by RFCVD, RFPACVD and PLD methods while taking into consideration how their molecular structure affects their adhesive and tribological properties. Additionally, the relation between interoperation plastic forming and internal stress pattern and intensity in the surface layer of samples subject to two-step heat-treating is examined. Chapters 1 to 3 constitute the first part of the monograph where methods of enhancing mechanical properties of aluminum alloys by modification of their chemical composition, plastic forming, and a combination of the two while accounting for the necessary conditions for generation of core shell hardening precipitates are described. The chapters also contain a detailed discussion of various methods of altering the surface layer of aluminum alloys to improve their tribological behaviour. Drawbacks of each one are also analyzed. In the second part of the treatise, that is in Chapters 5 through 7, the results of original research are reported that involved selecting of parameters of age-hardening of commercial aluminum alloys 7075 and 2024 (time and value of temperature for consecutive stages of aging). These parameters constitute boundary conditions for deposition of low friction wear resistant coatings. In Chapter 5, the results of research are presented that focused on selecting parameters of two-step age hardening according to their ability to enable control over the size of produced precipitates as well as according to their morphology. Moreover, the influence of conditions of the two-step age hardening process on generation of core shell hardening phases in the a aluminum continuous medium of the 2024 alloy was examined. Differences were found in chemical composition of the core and coating of the hardening precipitates, and therefore in mechanical properties, which has a direct influence on the enhancement of the properties of the sample. Whenever core shell phases were present, tensile strength and ultimate elongation increased. Chapter 6, accounts for the influence that surface plastic forming, - shot peening in this case, has over the dynamics of age hardening processes considering, at the same time, internal stress patterns and hardness of the surface layer of the examined 7075 and 2024 aluminum alloys. In Chapter 7, the parameters of the two-step age hardening defined in Chapter 5 are used in depositing low friction wear resistant gradient coatings, while taking into account physicochemical modification of the substrate, with a view to enhancing their adhesive properties. For these purposes, molecular structure of the produced hydrogen-modified carbon- and silicon-based coatings was correlated with tribological properties and adhesion to the substrate. Chapters 8 and 9 serve as a final summary description of the developed technology that enables production of light and functional low friction anti-wear materials resistant to contact fatigue. Special attention is drawn to the assumed, and as such binding, possibility of simultaneous co-occurrence of precipitation in the substrate with the production process of the Technological Surface Layer, characterized by low friction coefficient, high wear resistance as well as enhanced resistance to contact fatigue. Chapters 8 and 9 serve as a final summary description of the developed technology that enables production of light and functional low friction anti-wear materials resistant to contact fatigue. Special attention is drawn to the assumed, and as such binding, possibility of simultaneous co-occurrence of precipitation in the substrate with the production process of the Technological Surface Layer, characterized by low friction coefficient, high wear resistance as well as enhanced resistance to contact fatigue.
Rocznik
Tom
Strony
1--113
Opis fizyczny
Bibliogr. 168 poz., il. kolor., wykr.
Twórcy
  • Instytut Inżynierii Materiałowej Politechniki Łódzkiej
Bibliografia
  • [1] H. Helms, U. Lambrecht i U. Hopfner, Energy savings by Light-weighting. I & II Final report., International Aluminium Institute (IAI), Heidelberg, 2004.
  • [2] Dyrektywa UE 2006/944/WE z dn. 14.12.2006 w sprawie ograniczenia emisji CO2.
  • [3] Strategia Ochrony Powietrza w UE – Dyrektywa CAFE, Czyste powietrze dla Europy, z dn. 21.09.2005 r.
  • [4] H. Lipsitt, Use of Lightweight Materials In 21st century Army Trucks., The National Academies Press Washington, D.C., 2003.
  • [5] P. Mrva, D. Kottfer i Ł. Kaczmarek, Effect of shot peening and NiAl Coating on fatigue limit of Mg-Al-Zn-Mn alloy. Archives of Metallurgy and Materials tom 56, pp. 743-748, 2011.
  • [6] V. Raghavan, Al-Cu-Li (Aluminum-Copper-Lithium), Journal of Phase Equilibria and Diffusion 31, pp. 288-290, 2010.
  • [7] M. Stegliński, Ł. Kaczmarek, J. Swiniarski, W. Stachurski i J. Sawicki, Optimization of the heat and mechanical treatment of the A l-Zn-Mg-Li alloy, Archives of Foundry Engineering 10, pp. 277-282, 2010.
  • [8] L. Rokhlin, N. Bochvar, N. Leonova i I. Tarytina, Joint effect of scandium, chromium, and zirconium on the aging and recrystallization of aluminum alloys, Russian Metallurgy (Metally), pp. 55-59, 2011.
  • [9] K. Satya Prasad, A. Gokhale, A. Mukhopadhyay, D. Banerjee i D. Goel, On the formation of faceted Al3Zr (beta’) precipitates in Al-Li-Cu-Mg-Zr alloys, Acta Materialia 47, pp. 2581-2592, 1999.
  • [10] C. Wang, G. Min, Q. Lu i Z. Lu, Solidification structure and mechanical properties of Al–Li–Cu–Zr cast alloys, International Journal of Cast Metals Research 17, pp. 264-266, 2004.
  • [11] V. Raghavan, Al-Ce-Cu (Aluminum-Cerium-Copper), Journal of Phase Equilibria and Diffusion 29, pp. 264-266, 2008.
  • [12] P. Riani, L. Arrighi, R. Marazza, D. Mazzone, G. Zanicchi i R. Ferro, Ternary rare-earth aluminum systems with copper: A review and a contribution to their assessment, Journal of Phase Equilibria & Diffusion 25, pp. 22-52, 2004.
  • [13] J. Røyset i N. Ryum, Scandium in aluminium alloys, International Materials Reviews 50, pp. 19-44, 2005.
  • [14] E. Marquis i D. Seidman, Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys, Acta Materialia 49, pp. 1909-1919, 2001.
  • [15] T. Bastow i S. Celotto, Clustering and formation of nano-precipitates in dilute aluminium and magnesium alloys, Materials Science and Engineering: C 23, pp. 757-762, 2003.
  • [16] L. Toporova, D. Eskin, M. Kharakterova i T. B. Dobatkina, Advanced aluminum alloys containing scandium, Gordon, 1998.
  • [17] E. Hornbogen, Hundred years of precipitation hardening, Journal of Light Metals 1, pp. 127-132., 2001.
  • [18] S. Ringer, B. Muddle i P. I.J., Effect of cold work on precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) alloys, Metallurgical and Materials Transactions A, pp. 1659-1671, 1995.
  • [19] N. Belov, A. A.N., E. D.G. i V. Istomin-Kastrovskii, Optimization of hardening of Al-Zr-Sc alloys, Journal of Materisls Science 41, pp. 5890-5899, 2006.
  • [20] M. Clinch, S. Harris, W. Hepples, N. Holroyd, M. Lawday i B. Noble, Influence of Zinc to magnesium ratio and total solute content on the strength and toughness of 7xxx series alloys, Materials Science Forum 519-521, pp. 339-344, 2006.
  • [21] S. Wang, M. Starink i N. Gao, Overview of recent work on precipitation in Al- Cu-Mgvalloys, Materials Science Forum 546-549, pp. 775-782, 2007.
  • [22] S. P. Ringer, T. Sakurai i P. I. J., Origins of hardening in aged Al-Cu-Mg-(Ag) alloys, Acta Materialia 55 (9), p. 3731-3744, 1997.
  • [23] Y. Nagai, M. Murayma, Z. Tang, T. Nonaka, K. Hono i M. Hasegawa, Role of vacancy-solute complex in the initial rapid age hardening in an Al-Cu-Mg alloy, Acta Materiallia 49, pp. 913-920, 2001.
  • [24] S. Vannarat, M. F. Sluiter i Y. Kawazoe, First-principles study of solute-dislocation interaction in aluminum-rich alloys, PHYSICAL REVIEW B 64, pp. 224203-1 - 224203-8, 2001.
  • [25] M. Drits, L. Ber, Y. Bykov, L. Toropova i G. Anastas’eva, Ageing of Al-0.3 at.% Sc, Physics of Metals and Metallography 57, pp. 118-126, 1984.
  • [26] M. Kanno i B. Ou, Heterogeneous Precipitation of Intermediate Phases on Al3Zr particles in Al-Cu-Zr and. Al-Li-Cu-Zr alloys, Mater. Trans. JIM, 32, pp. 445-450, 1991.
  • [27] A. Saccone, G. Cacciamani, D. Maccio, G. Borzone i R. Ferro, Contribution to the study of the alloys and intermetallic compounds of aluminium with the rareearth metals, Intermetallics 6, pp. 201-215, 1998.
  • [28] P. Rizzi, M. Baricco, S. Borace i L. Battezzati, Phase selection in Al–TM–RE alloys: nanocrystalline Al versus intermetallics, Materials Science and Engineering A 304-306, pp. 574-578, 2001.
  • [29] K. Gschneidner, B. Beaudry i J. Capellen, “Rare Earth Metals” in Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook, ASM International, Materials Park, OH, tom VI, nr 2, pp. 720-32, 2000.
  • [30] A. Kearney i E. Rooy, Aluminum Foundry Products in Properties and Selection: Nonferrous Alloys and Special Purpose Materials, ASM Handbook, ASM International, Materials Park, OH,, tom VI, nr 2, pp. 123-51, 2000.
  • [31] H. Inoue i K. A., Fabrications and mechanical properties of bulk amorphous nanocrystalline, nanoquasicrystalline alloys in aluminum-based system, Journal of Light Metals 1, pp. 31-41, 2001.
  • [32] Y. Harada i D. Dunand, Microstructure of Al3Sc with ternary rare-earth additions, Intermetallics, pp. 17-14, 2009.
  • [33] C. B. Fuller, D. Seidman i D. Dunand, Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures, Acta Materialia 51, pp. 4803-4814, 2003.
  • [34] M. Jones i F. Humphreys, Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium, Acta Materialia 51, pp. 2149-2159, 2003.
  • [35] M. Song, Y. He i S. Fang, Effects of Zr Content on the Yield Strength of an Al-Sc Alloy, Journal of Materials Engineering and Performance, 20, pp. 377-381, 2011.
  • [36] W. Gasior, Z. Moser i J. Pstruś, Densities of Solid Aluminum-Lithium (Al-Li) Alloys, Journal of Phase Equilibria 19, pp. 234-238, 1998.
  • [37] C. Meric, An Investigation on the Elastic Modulus and Density of Vacuum Casted Aluminum Alloy 2024 Containing Lithium Additions, Journal of Materials Engineering and Performance 9, pp. 266-271, 2000.
  • [38] I. Gąsior, B. Onderka, Z. Moser, A. Dębski i T. Gancarz, Thermodynamic Evaluation of Cu-Li Phase Diagram from EMF Measurements and DTA Study, Calphad 33, pp. 215-220, 2009.
  • [39] V. Guillaumin, Aluminum-lithium alloys in Airbus airframes, Aerospace Engineering 8, pp. 158-164, 2005.
  • [40] E. Rodrigues, A. Matias i L. Godefroid, Fatigue Crack Growth Resistance and Crack Closure Behavior in two Aluminum Alloys for Aeronautical Applications, Materials Research 3, pp. 287-291, 2005.
  • [41] W. Casada, G. Shiflet i W. Jesser, Heterogenous nucleation and growth of δ’ in Al-8 at.%Li, Acta Metallurgica et Materialia, pp. 2101-2112, 1992.
  • [42] V. Sinyavskii i A. Semenov, Mechanism of Stress Corrosion Cracking of Al–Li Alloys, Protection of Metals, pp. 132-140, 2002.
  • [43] T. S. Srivatsan, T. S. Sudarshan i G. E. Bobeck, Corrosion behaviour of a quaternary Al–Li–Cu–Mg alloy in 3•5% NaCl solution, British Corrosion Journal, pp. 39-45, 1990.
  • [44] T. Sheppard i N. C. Parson, Corrosion resistance of Al–Li alloys, Materials Science and Technology 3, pp. 345-352, 1987.
  • [45] V. Zakharov, Some problems of the use of aluminum-lithium aloys, Metal Science and Heat Treatment, pp. 49-54, 2003.
  • [46] A. Semenov, Effect of Mg Additions and Thermal Treatment on Corrosion Properties of Al–Li–Cu-Base Alloys, Protection of Metals 37, pp. 126-131, 2001.
  • [47] S. Lynch, B. Muddle i T. Pasang, Mechanisms of brittle intergranular fracture in Al–Li alloys and comparison with other alloys, Philosophical Magazine A 82, pp. 3361-3373, 2002.
  • [48] L. Meng i X. Zheng, „Overview of the effects of impurities and rare earth elements in A1-Li alloys,” Materials Science and Engineering A237, pp. 109-118, 1997.
  • [49] E. Williams i J. Starke, Progress in Structural Materials for Aerospace Systems, Acta Materialia 51, pp. 5775-5799, 2003.
  • [50] K. Funatani, Emerging technology in heat treatment and surface engineering of automotive components, La Metallurgia Italiana 2, pp. 67-73, 2006.
  • [51] M. Salazar-Guapuriche i Y . Z hao, Correlation of strength with hardness and electrical conductivity for aluminium alloy 7010, Materials Science Forum, pp. 519-521, 2006.
  • [52] T. Warner, Rencently-developed aluminum solutions for aerospace applications, Materials Science Forum 519-521, pp. 1271-1278, 2006.
  • [53] I. Fridlyander, A. Dobromyslov, E. Tkachenko i O. Senatorova, Advanced highstrength aluminum-base materials, etal Science and Heat Treatment 47, pp. 269- 275, 2005.
  • [54] Z. Mao, W. Chen, D. Seidman i C. Wolverton, Frist-priciples study of the nucleation and stability of ordered precipitates in ternary Al-Sc-Li alloys, Acta Materialia, tom 59, pp. 3012-3023, 2011.
  • [55] M. E. Krug, A. Werber, D. Dunan i D. Seidman, Core–shell nanoscale precipitates in Al–0.06 at.% Sc microalloyed with Tb, Ho, Tm or Lu, Acta Materialia, tom 58, pp. 134-145, 2010.
  • [56] C. Monachon, M. E. Krug, D. N. Seidman i D. Dunand, Chemistry and structure of core/double-shell nanoscale precipitates in Al-6.5Li-0.07Sc-0.02Yb, Acta Materialia, tom 59, pp. 3398-3409, 2011.
  • [57] D. Xu, P. Rometsch i N. Birbilis, Improved solution treatment for an as-rolled Al−Zn−Mg−Cu alloy. Part I. Characterisation of constituent particles and overheating, Materials Science and Engineering A, tom 534, pp. 234-243, 2012.
  • [58] R. Lumley, J. Buha, I. Polmear, A. Morton i A. Crosky, Secondary Precipitation in Aluminium Alloys & its Role in Modern Heat Treatment, Materials Science Forum, pp. 283-290, 2006.
  • [59] R. Marceau, G. Sha, R. Lumley i S. Ringer, Evolution of solute clustering in Al–Cu–Mg alloys during secondary ageing, Acta Materialia, tom 58, pp. 1795- 1805, 2010.
  • [60] Y. Ma, X. Zhou, G. Thompson, T. Hashimoto, P. Thomson i M. Fowles, Distribution of intermetallics in an AA 2099-T8 aluminium alloy extrusion, Materials Chemistry and Physics 126, (2), pp. 46-53, 2011.
  • [61] P. Campestrinia, E. Van Westinga, H. Van Rooijena i J. De Wit, Relation between microstructural aspects of AA2024 and its corrosion behaviourinvestigated using AFM scanning potential technique, Corrosion Science 42, pp. 1853-1861, 2000.
  • [62] V. Radmilovic, A. Tolley, E. Marquis, M. Rossell, Z. L ee i U . D ahmen, Monodisperse Al3(LiScZr) core/shell precipitates in Al Alloys, Scripta Materialia, tom 58, pp. 529-532, 2008.
  • [63] B. Verma, J. Atkinson i M. Kumar, Study of fatigue behavior of 7475 aluminium alloy, Materials Science Forum 24, pp. 231-236, 2001.
  • [64] J. Li, Z. Peng, C. Li, Z. Jia, W. Chen i Z. Zheng, Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments, Trans. Nonferrous Met. Soc. China, tom 18, pp. 755-762, 2008.
  • [65] S. Liu, X. Zhang, M. Chen i J. You, Influance of ageing on quench sensitivity effect of 7055 aluminium alloy, w School of Materials Science and Engineering, Central South University, Changsha,, Hunan 410083, PR China, 2006.
  • [66] J. Buha, R. Lumley i A. Crosky, Secondary ageing in an aluminium alloy 7050, A492, pp. 1-10, 2008.
  • [67] J. Ying i T. Ohashi, Precipitation structure and mechanical properties of Al−Li−Zr alloy containing V., Scripta Materialia , tom 41, pp. 137-141, 1999.
  • [68] E. Clouet, E. Lae, T. Epicier, W. Lefebvre, M. Nastar i D. A., Complex precipitation pathways in multi-component alloys, Nature Materials 5, pp. 482-488, 2006.
  • [69] S. Ber, Accelerated artificial aging regimes of commercial aluminum alloy. II: Al−Cu, Al−Zn−Mg− (Cu), Al−Mg−Si− (Cu) alloys, Materials Science and Engineering A280, pp. 91-96, 2000.
  • [70] A. Deschamps, L. Lae i P. Guyot, In situ small-angle scattering study of the recipitation kinetics in an Al–Zr–Sc alloy,” Acta Materialia, tom 55, pp. 2775- 2783, 2007.
  • [71] S. Fujikawa, Impurity Diffusion of Scandium in Aluminum, Defect and Diffusion Forum 143-147 , pp. 115-120, 1997.
  • [72] M. Mantina, S. Shang, Y. Wang, L. Chen i Z. Liu, 3d transition metal impurities in aluminum: A first-principles study, PHYSICAL REVIEW B 80, p. 184111, 2009.
  • [73] M. Mantina, Y. Wang, L. Chen, Z. Liu i C. Wolverton, First principles impurity diffusion coeficients, Acta Materialia 57, pp. 4102-4108, 2009.
  • [74] P. Uliasz, Dobór materiału i opracowanie konstrukcji wysokotemperaturowych przewodów elektroenergetycznych ze stopów AlZr. Praca doktorska, Kraków: Akademia Górniczo-Hutnicza, 2010.
  • [75] Ю. Лопатин, В. Чувильбеев, А. Нохрин, В. Копылов, О. Пирожникова, Н. Сахаров, А. Пискунов i Н. Мелёхин, Влияние температуры интенсивной пластической деформации на предел диспергирования зерен в металлах и сплавах, Вестник Нижегородского университета, tom 5, nr 2, pp. 132-137, 2010.
  • [76] Н. Габун, Экспериментальное исследование методов накопления пластических деформаций в металах и сплавах с целью измельчения их структуры, ХI еждународная научно-техническая уральская школа-семинар металловедов – молодых ученых, Екатеринбург, 2010.
  • [77] А. Попов, Процессы интенсивной пластической деформации для получения наноструктурных материалов, ХI Международная научно-техническая уральская школа-семинар металловедов – молодых ученых, Екатеринбург, 2010.
  • [78] C. Rodopoulos, A. Kermanidis, E. Statnikov, V. Vityazev i O. Korolkov, Effect of Surface Engineering Treatments on the Fatigue Behaviour of 2024-T351 Aluminium Alloy, Journal of Materials Engineering and Performance 16, pp. 30-34, 2007.
  • [79] Q. Li-wei, Z. Gang, S. Gao i B. Muddle, Effect of pre-stretching on microstructure of aged 2524 aluminium alloy, Transactions of Nonferrous Materials Society of China, pp. 1957-1962, 2011.
  • [80] I. Majumdar i J. Manna, Laser Processing of materials, Sadhana 28 Parts 3&4, pp. 495-562, 2003.
  • [81] C. Rodopoulos, J. Romero, S. Curtis, E. Rios i P. Peyre, Effect of Controlled Shot Peening and Laser Shock Peening on the Fatigue Performance of 2024-T351 Aluminum Alloy, Journal of Materials Engineering and Performance 12, pp. 414-419, 2003.
  • [82] C. Yang, P. Hodgson, Q. Liu i L. Ye, Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening, Journal of Mechanical Design 201, pp. 303-309, 2008.
  • [83] I. Mylonas, U. Heckenberger i G. Lampeas, Investigation on shot-peening induced residual field, w 2nd International Conference on IDE Distortion Engineering,, Bremen, Germany, 2008.
  • [84] G. Hammersley, L. Hackel i F. Harris, Surface prestressing to improve fatigue strength of components by laser shot peening, Optics and Lasers in Engineering 34, pp. 327-337, 2000.
  • [85] P. Peyre, R. Fabbro, P. Merrien i H. Lieurade, Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour, Materials Science and Engineering A210, pp. 102-113, 1996.
  • [86] W. Napadłek, Wpływ umacniania warstwy wierzchniej stopu aluminium PA31 (ENAW-2618A) falą uderzeniową generowaną impulsem laserowym (LSP) na wytrzymałość zmęczeniową, Inżynieria Materiałowa 5, pp. 1159-1162, 2006.
  • [87] S. Vukelic, I . Noyan, J . K ysar i Y . Y ao, Characterization of Heterogeneous Response of Al Bicrystal Subject to Micro Scale Laser Shock Peening, Experimental Mechanics 51, pp. 793-796, 2011.
  • [88] A. Tolley, R. Ferragut i A. Somoza, Study of the nanostructures formed in 2024 alloy during thermomechanical treatments, Materials Science Forum 519-521, pp. 489-494, 2006.
  • [89] R. Valiev, Y. Estrin, Z. Horita, T. Langdon i M. Zehetbauer, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation, JOM, pp. 33-39, 2006.
  • [90] T. Valiev i R. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Process in Materials Science 51, pp. 881-981, 2006.
  • [91] K. Muszka, Wpływ rozdrobnienia struktury na mechanizm umocnienia stali niskowęglowych odkształcanych plastycznie, Akademia Górniczo-Hutnicza im.St.Staszica w Krakowie, Kraków, 2008.
  • [92] R. Averback, Sintering and deformation of nano-grained materials, Atoms, Molecules and Clusters 26, pp. 84-88, 1993.
  • [93] C. Suryanarayana i C. Koch, Nanocrystalline materials – Current research and future direction, Hyperfine Interactions 130, pp. 5-44, 2000.
  • [94] C. Suryanarayana, Nanocrystalline materials, International Materials Reviews 40 (2), pp. 41-64, 1995.
  • [95] S. Ramasamy, S. D.J., P. Thangadurai, K. Ravichandran, T. Prakash, K. Padmaprasad i V. Sabarinathan, Recent study of nanomaterials prepared by inert gas condensation using ultra high vacuum chamber,” Journal of Phisics, pp. 881-891, 2005.
  • [96] A. Steigerwald i R. Mu, Potential of pulsed electron-beam deposition for nanomaterial fabrication: Spatial distribution of deposited materials, Journal of Vacuum Science & Technology B 26 (3), pp. 1001-1005, 2008.
  • [97] R. Kelsall, I. Hamley i M. Geoghegan, Nanoscale Science and Technology, John Wiley&SonsLtd, 2005.
  • [98] H. Ahamed i V. Senthilkumar, Consolidation behavior of mechanically alloyed aluminum based nanocomposites reinforced with nanoscale Y2O3/Al2O3 particles, Materials Characterization 62 (12), pp. 1235-1249, 2011.
  • [99] B. Han i E. Lavernia, Cryomilled Nanostructured Alloys, Meeting Proceedings RTO-MP-AVT-122, Neuilly-sur-Seine, France, 2005.
  • [100] A. Maisano, Cryomilling of aluminum-based and magnesium-based metal powders, Virginia, USA: Virginia Polytechnic Institute and State University, 2006.
  • [101] C. Barbosa, J. Garcia de Blas i L. Pereira, A Survey on Technological Developments for Fabricating Nanostructured Metals and Alloys, Recent Patents on Materials Science 2 (3), pp. 232-243, 2009.
  • [102] C. Koch, Top-down synthesis of nanostructured materials: mechanical and thermal processing methods, Reviews on Advanced Materials Science, pp. 91-99, 2003.
  • [103] R. Hayes, V. Tellkamp i E. Lavernia, Creep behavior of a cryomilled ultrafine-grained Al-4%Mg alloy, Journal of Materials Research 15 (10), pp. 2215-2222, 2000.
  • [104] I. Valiev i R. Alexandrov, Paradox of strength and ductility in metals processed by severe plastic deformation, Journal of Materials Research 17, pp. 5-8, 2002.
  • [105] A. Rosochowski, Processing metals by severe plastic deformation, Solid State Phenomena 101-102, pp. 13-22, 2005.
  • [106] N. Mahallawy, F. Shehata, M. Hameed, M . Abd E l Aal i H . K im, 3D FEM simulations for the homogeneity of plastic deformation in Al-Cu alloys during ECAP, Materials Science and Engineering A, tom 527, pp. 1404-1410, 2010.
  • [107] M. Abd El Aal, N. Mahallawy, F. Shehata, M. Hameed, E. Yoon i H. Kim, Wear properties of ECAP – processed ultrafine grained Al-Cu alloys, Materials Science and Engineering A, tom 527, pp. 3726-3732, 2010.
  • [108] N. Chinh, J. Gubicza, T. Czeppe, J. Lendvai, C. Xu, R . V aliev i R . L angdon, Developing a strategy for the processing of age-hardenable alloys by ECAP at room temperature, Materials Science and Engineering A, tom 516, pp. 248-252, 2009.
  • [109] B. Richert i M. Leszczyńska, Utrafine and nano-grained aluminium alloys formed by cyclic extrusion compression, Archives of Metallurgy and Materials, pp. 721-726, 2008.
  • [110] M. Mroczkowski, Prognozowanie stateczności plastycznego płynięcia metali i ocena przydatności projektowanych narzędzi z wykorzystaniem metody elementów skończonych, Akademia Górniczo-Hutnicza im. St. Staszica w Krakowie, 2008.
  • [111] Y. Zhu, H. Jiang, J. Huang i T. Lowe, A new route to bulk nanostructured metals, Metallurgical and Materials Transactions A 32A, pp. 1559-1562, 2001.
  • [112] Ю. Лопатин, В. Чувильбеев, А. Нохрин, В. Копылов, О. Пирожникова, Н. Сахаров, А. Пискунов i Н. Мелёхин, „Влияние температуры интенсивной пластической деформации на предел диспергирования зерен в металлах и сплавах,” Вестник Нижегородского университета, tom 5, nr 132-137, 2010.
  • [113] Н. Габун, Экспериментальное исследование методов накопления пластических деформаций в металах и сплавах с целью измельчения их структуры; ХI еждународная научно-техническая уральская школа-семинар металловедов – молодых ученых, Екатеринбург, 2010.
  • [114] H. Kim i Y. Estrin, Microstructural modelling of equal channel angular pressing for producing ultrafine grained materials, Materials Science and Engineering A, tom 410-411, pp. 285-289, 2005.
  • [115] B. Adamczyk-Cieślak, J. Mizera, M. Lewandowska i K. Kurzydłowski, Microstructure evaluation in an Al-Li alloy processed by severe plastic deformation, Reviews on Advanced Materials Science 8, pp. 107-110, 2004.
  • [116] H. Roven, H. Nesboe, W. J.C. i T. Seibert, Mechanical properties of aluminium alloys processed by SPD: Comparison of different alloy systems and possible product areas, Materials Science and Engineering A 410-411, pp. 426-429, 2005.
  • [117] P. Snyder i H. Harry Syeltz, The Heat of Formation of Aluminum Oxide, Journal of the American chemical Society, pp. 683-685, 1945.
  • [118] I. Minami i A. Sugibuchi, Surface Chemistry of Aluminium Alloy Slid against Steel Lubricated by Organic FrictionModifier in Hydrocarbon Oil, Advances in Tribology, pp. 1-7, 2012.
  • [119] I. Minami, A. Yamazaki, H. Nanao i S. Mori, A cylinder and assembled fourblock type tribo-test: novel method to study tribo-chemistry of lubricant and material, Tribology Online 2 (1), pp. 40-43, 2007.
  • [120] S. Gredelj, S. Kumar, A. Gerson i P. Cavallaro, „Radio frequency plasma nitriding of aluminium at higher power levels, Thin Solid Films 515, pp. 1480-1485, 2006.
  • [121] D. Batory, M. Cłapa i S. Mitura, Warstwy gradientowe Ti:C wytwarzane w plazmie RF PACVD z udziałem rozpylania magnetronowego, Inżynieria Materiałowa 5 (153), pp. 868-870, 2006.
  • [122] D. Manowa, S. Mandl i B. Rauschenbach, Evolution of surface morphology during ion nitriding of aluminium, Surface and Coatings Technology 180-181, pp. 118-121, 2004.
  • [123] A. Thomann, E. Sicard, C. Boulmer-Leborgne, C. Vivien, C. Hermann, C. Andreazza-Vignolle, P. Andreazza i C. Meneau, Surface nitriding of titanium and aluminium by laser-induced plasma, Surface and Coatings Technology 97, pp. 448-452, 1997.
  • [124] B. Major, Laser Technology in Generating Microstructure of Functionally Gradient Materials, Archives of Metallurgy and Materials 50, pp. 35-46, 2005.
  • [125] E. Sicard, C. Boulmer-Leborgne i T. Sauvage, Excimer laser induced surface nitriding of aluminium alloy, Applied Surface Science 127-129, pp. 726-730, 1998.
  • [126] B. Burakowski i T. Major, Osadzanie laserem impulsowym − metoda PLD, Inżynieria Materiałowa 5 (112), pp. 339-343, 1999.
  • [127] M. Okumiya, Y. Tsunekawa i T. Murayama, Surface modification of aluminium using ion nitriding and fluidized bed, Surface and Coatings Technology 142-144, pp. 235-240, 2001.
  • [128] M. Wenzelburger, D. Lopez i R. Gadow, Methods and application of residual stress analysis on thermally sprayed coatings and layer composites, Surface and Coatings Technology 201, pp. 1995-2001, 2001.
  • [129] M. Wenzelburger, M. Escribano i R. Gadow, Modelling of thermally sprayed coatings on light metal substrates: layer growth and residual stress formation, urface and Coatings Technology 180-181, pp. 429-435, 2004.
  • [130] M. Betiuk, J. Senatorski, K. Burdyński, A. Przywóski i I. Pokorska, Modyfikacja powierzchni stopów aluminium i miedzi technologią duplex − Galwanotechnika i PVD, Inżynieria Materiałowa 5 (153), pp. 875-877, 2006.
  • [131] I. Polmear, Light Alloys, Metallurgy of the Light Metals, New York : Wiley, 1995.
  • [132] T. Telbizova, S. Parascandola, F. Prokert, E. Richter i W. Moller, Ion nitriding of aluminium-experimental investigation of the thermal transport, Nuclear Instruments and Methods in Physics Research B 161-163, pp. 690-693, 2000.
  • [133] S. G redelj, A. G erson, M. Kumar i P. Cavallaro, Interaction of aluminium with stainless steel during plasma nitriding, Applied Surface Science 193, pp. 189-194, 2002.
  • [134] N. Renevier, T. Czerwiec, A. Billard, J. Stebut i H. Michel, A way to decrease the nitriding temperature of aluminium: the low-pressure arc-assisted nitriding process, Surface and Coatings Technology 116-119, pp. 380-385, 1999.
  • [135] M. Quast, P. Mayr i H. Stock, Plasma monitoring of plasma-assisted nitriding of aluminium alloys, Surface and Coatings Technology 120-121, pp. 244-249, 1999.
  • [136] D. Kent, G. Schaffer i J. Drennan, Novel Aluminium Nitride Surface Coatings Formed on Aluminium, Materials Science Forum 561-565, pp. 571-575, 2007.
  • [137] P. Visuttipitukul, T. Aizawa i H. Kuwahara, Advanced Plasma Nitriding for Aluminum and Aluminum Alloys, Materials Transactions 44 (12), pp. 2695-2700, 2003.
  • [138] M. T. Y. M. T. Okumiya, Surface modification of aluminium using ion nitriding and fluidized bed, Surface and Coatings Technology 142-144, pp. 235-240, 2001.
  • [139] R. Evans, A. Salifu, G. Zhang, E. Evans, S. Hariharan i G. Young, Development of experimental techniques and an analytical model for aluminum nitriding, Surface and Coatings Technology 157, pp. 59-65, 2002.
  • [140] H. Podlesak, U. Faust, B. Wielage, M. Quast, P. Mayr i H .-R. Stock, Chemical Composition and Microstructure of Plasma-Nitrided Aluminium, Mikrochimica Acta , pp. 285-288, 2000.
  • [141] M. Quast, P. Mayr, H.-R. Stock, H. Podlesak i B. Wielage, In situ and ex situ examination of plasma-assisted nitriding of aluminium alloys, Surface and Coatings Technology , pp. 238-249, 2001.
  • [142] H. Dong i H. Li, Oxygen boost diffusion for the deep-case hardening of titanium alloy, Materials Science and Engineering A280 , pp. 303-310, 2000.
  • [143] Z. Zhang, H. Dong, T. Bell i B. Xub, The effect of treatment condition on boost diffusion of thermally oxidised titanium alloy, Journal of Alloys and Compounds 431, pp. 93-99, 2007.
  • [144] H. Dong, A. Bloyce, P . Morton i T . Bell, Surface oxidation of a titanium or titanium alloy article. Patent 6210807, 1999.
  • [145] D. Seidman, E. Marquis i D. Dunand, Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys, Acta Materialia , pp. 4021- 4035, 2002.
  • [146] Ł. Kaczmarek, J. Sawicki, M. Stegliński, H. Radziszewska, Ł. S. W. Kołodziejczyk, D. Batory i J. Świniarski, Lekkie materiały gradientowe dla zastosowań w węzłach mechanicznych, Inżynieria Materiałowa, pp. 639-645, 6/2012.
  • [147] Ł. Kaczmarek, J. Sawicki, K. Kyzioł, D. Siniarski, S. Jonas, M. Stegliński, Ł. Kołodziejczyk i K. Tkacz-Śmiech, Surface modification of aluminium − lithium alloy using prenitriding option and SixNy coating deposition, Journal of Achievements in Materials and Manufacturing Engineering 37/2, pp. 282-285, 2011.
  • [148] L. Kaczmarek, P. Kula, J. Sawicki, S. Armand, T. Castro, P. Kruszyński i A. Rochel, New possibilities of applications aluminum alloys in transport, Archives of Metallurgy and Materials, pp. 1199-1207, 54/2009.
  • [149] Ł. Kaczmarek, M. Stegliński, J. Sawicki, P. Kula, K. Kyzioł, D. Batory, D. Kottfer i L. Klimek, Sposób polepszania właściwości mechanicznych stopów aluminium. Polska Patent P.398270, 2011.
  • [150] W. Olivier i G. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7, pp. 1564-1583, 1992.
  • [151] Ł. Kaczmarek, M. Stegliński, J. Sawicki, J. Świniarski, D. Batory, K. Kyzioł, Ł. Kołodziejczyk, W. Szymański, P . Z awadzki i D . l K ottfer, Optimization of the heat treatment and tribological properties of 2024 and 7075 aluminium alloys, Archives of Metallurgy and Materials, p. przyjęte do druku, 1/2013.
  • [152] Ł. Kaczmarek, M. Stegliński, H. Radziszewska, Ł. Kołodziejczyk, J. Sawicki, W. Szymański, R. Atraszkiewicz i J. Świniarski, Core shell precipitates effect on the mechanical properties of the 2024 aluminium alloy, Metal Science and Heat Treatment , p. przyjęte do druku, 1/2013.
  • [153] Ł. Kaczmarek, M. Stegliński, H. Radziszewska, Ł. Kołodziejczyk, J. Sawicki, W. Szymański, R. Atraszkiewicz i J. Świniarski, Влияние двухфазных выделений, образующихся в процессе двухстадийного старения, на прочностные свойства сплава PN-EN 2024, MITOM, pp. 45-50, 9/2012.
  • [154] D. Tsivoulas, T. Czeppe i W. Krajewski, DSC examinations of the Al-20 wt.%Zn sand-cast alloy inoculated with Ti-containing grain-refiners, Inżynieria Materiałowa 3, pp. 590-593, 2010.
  • [155] G. Mrówka-Nowotnik, J. Sieniawski, K. Raga i M. Wierzbińska, Wpływ warunków umacniania wydzieleniowego na mikrostrukturę i właściwości mechaniczne stopu aluminium 2024, Inżynieria Materiałowa, pp. 601-604, 6/2012.
  • [156] Rosik i R., Nowe zastosowanie glikolu propylenowego, 2012.
  • [157] M. Benedetti, V. Fontanari, P. Scardi, C. Ricardo i M. Bandini, Reverse bending fatigue of shot peened 7075-T651 aluminium alloy: The role, International Journal of Fatigue, 2009.
  • [158] Y. Gao, Improvement of fatigue property in 7050-T7451 aluminum alloy by laser, Materials Science and Engineering A, nr 528, pp. 3823-3828, 2011.
  • [159] M. Mhaede, Y. Sano, I. Altenberger i L. Wagner, Fatigue Performance of Al7075-T73 and Ti-6Al-4V: Comparing Results after Shot Peening, Laser Shock Peening and Ball-Burnishing, 2010.
  • [160] L. Kazicyna i N. Kupletska, Metody spektroskopowe wyznaczania struktury związków organicznych, Warszawa: PWN, IInd Edition 1976.
  • [161] L. Marcinauskas, A. Grigonis, H. Manikowski i V. Valincius, Deposition of amorphous hydrogenated carbon coatings by plasma jet, Acta Physica Polonica A, pp. 1063-1066, 113 (3) 2008.
  • [162] Ł. Kaczmarek, K. Kyziol, J. Sawicki, M. Steglinski, H. Radziszewska, W. Szymanski, Ł . Kolodziejczyk i R . D . P . Z . T. I. o. c. g. Atraszkiewicz, The Influence of chemical groups on the mechanical properties of SiCNH coatings deposited on 7075 aluminiu alloy, Thin Solid Films , p. przyjęte do druku, 2013.
  • [163] H. Pierson, Handbook of the refractory carbides and nitrides, Westwood, New Jersey: Noyes Publications, 1996.
  • [164] Z. Gawroński, Technologiczna warstwa wierzchnia w kołach zębatych i mechanizmach krzywkowych, Wydawnictwo Politechniki Łódzkiej, Łódź 2006.
  • [165] Z. Gawroński, Wpływ stanu naprężeń własnych w warstwach azotowanych na zużycie o charakterze zmęczenia stykowego, Wydawnictwo Politechniki Łódzkiej, Łódź 1999.
  • [166] D. Batory, T. Blaszczyk, M. Clapa i S. Mitura, Investigation of anti-corrosion properties of Ti:C gradient layers manufactured in hybrid deposition system, Journal of Materials Science 10, pp. 3385-3391, 2008.
  • [167] A. Gilewicz i B . Warcholiński, Twarde powłoki ta-C otrzymane metoda impulsowego katodowego odparowania łukowego, Inżynieria Materiałowa, pp. 50-53, 6/2009.
  • [168] P. Chu i L. Li, Characterization of amorphous and nanocrystalline carbon films, Materials Chemistry and Physics 96, pp. 253-277, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7266ac05-e2af-4de1-a4eb-f0fdbfdec5b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.