PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Fusion and friction stir welding of X6Cr17 stainless steel

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The σ-phase is the most serious of these secondary phases due to its impact on the mechanical properties, corrosion resistance or weldability of stainless steels among other properties. The purpose of this study is getting free σ-phase welding joints by using very novel welding method such a called friction stir welding. Design/methodology/approach: Both of fusion welding methods (MIG and TIG) and friction stir welding method were used to compare microstructure analysis of AISI 430 ferritic stainless steels. After welding, the formation of σ-phase was investigated by mechanical, chemical and micro structure analyses of welded joints. Findings: As a result, the formation of σ-phase have not been observed in FSW processes while compared to traditional fusion welding processes. Not only σ-phase have not been observed in metallurgical investigations but also micro hardness of all specimen have not been over 400HV on friction stir welded joints. Research limitations/implications: It is very difficult to be constant vertical force during friction stir welding. For keeping constant this force, hydraulic controlled welding machines could be used in further researches. Practical implications: This paper and its’ results shown that the friction stir welding could be used for joining of ferritic stainless steels, when you select suitable welding parameters. Originality/value: This study was performed in the frame of the Pamukkale University Scientific Research Projects Coordination Unit project no 2009FBE022 “The research of the factors affecting the friction stir weldability of ferritic stainless steels”.
Rocznik
Strony
403--409
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Mechanical Engineering Department, Engineering Faculty, Pamukkale University, Denizli, Turkey
autor
  • Mechanical Engineering Department, Technology Faculty, Amasya University, Amasya, Turkey
Bibliografia
  • [1] G.V. Smith, Sigma phase in stainless, What, when and why, Iron Age 166 (1950) 63-68.
  • [2] L. Duprez, B.C. De Cooman, N. Akdut., Deformation behaviour of duplex stainless steel during industrial hot rolling, Steel Research 73 (2002) 531-538.
  • [3] M.R. El Koussy, I.S. El Mahallawi, W. Khalifa, M.M. Al Dawood, M. Bueckins, Effects of thermal aging on microstructure and mechanical properties of duplex stainless steel weldments, Materials Science and Technology 20 (2004) 375-381.
  • [4] Y.S. Ahn, J.P. Kang, Effect of aging treatments on microstructure and impact properties of tungsten substituted 2205 duplex stainless steel, Materials Science and Technology 16 (2000) 382-388.
  • [5] T.H. Chen, K.L.Weng, J.R. Yang, The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel, Materials Science and Engineering A 338 (2002) 259-270.
  • [6] L. Karlsson, Proceedings of the Duplex Stainless Steels, Maastricht, 1997, 43-58.
  • [7] A. Redjaimia, G. Metauer,M. Gantois, Proceedings of the Duplex Stainless Steels, Beaune, 1991, 119-126.
  • [8] H. Sieurin, R. Sandstrom, Sigma phase precipitation in duplex stainless steel 2205, Materials Science and Engineering A 444 (2007) 271-276.
  • [9] Sigma phase embrittlement, ASM International Handbook Committee, ASM Handbook- properties and selection irons steels and high performance alloy, vol. 1, 1993, 1657.
  • [10] ASM specialty handbook of stainless steels, ASM International,1996.
  • [11] A.H. El Sawy. Characterization of Gas Tunsten Arc Welding (GTAW) fusion line phases for superferritic stainless steel weldments, Journal of Materials Processing Technology 118 (2001) 128-132.
  • [12] S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Rapid formation of the sigma phase in 304 stainless steel during friction stir welding. Scripta Materialia 49 (2003) 1175-1180.
  • [13] C.C. Silva, J.P. Farias, H.C. Miranda, R.F. Guimarães, J.W.A. Menezes, M.A.M. Neto, Microstructural characterization of the HAZ in AISI 444 ferritic stainless steel welds. Materials Characterization 59 (2008) 528-533.
  • [14] J. Brózda, J. Madej, Cracking of the mixing chamber caused by sigma phase precipitation in austenitic steel welded joints, Engineering Failure Analysis 15 (2008) 368-377.
  • [15] Y.H. Kim, D.J. Lee, J.C. Byun, K.H. Jung, J.I. Kim, H.J. Lee, Y.T. Shin, S.H. Kim, H.W. Lee. The effect of sigma phases formation depending on Cr/Ni equivalent ratio in AISI 316L weldments, Materials and Design 32 (2011) 330-336.
  • [16] B.W. Ahn, D.H. Choi, D.J. Kim, S.B. Jung, Microstructures and properties of friction stir welded 409L stainless steel using a Si3N4 tool, Materials Science and Engineering A 532 (2012) 476- 479.
  • [17] T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, M.D. Mathew, A.K. Bhaduri, Comparison of creep rupture behaviour of type 316L(N) austenitic stainless steel joints welded by TIG and activated TIG welding processes, Materials Science and Engineering A 528 (2011) 6971-6980.
  • [18] R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, K. Bettahar, N. Kherrouba. Effect of solution treatment temperature on the precipitation kinetic of σ-phase in 2205 duplex stainless steel welds, Materials Science and Engineering A 496/1-2 (2008) 447-454.
  • [19] S. Roychowdhury, V. Kain, A. Matcheswala, A. Bhandakkar, σ-phase induced embrittlement in titanium containing austenitic stainless steel tie-bars in a condenser, Engineering Failure Analysis 25 (2012) 123-132.
  • [20] A.K. Lakshminarayanan, K Shanmugam, V. Balasubramanian, Effect of welding processes on tensile and impact properties, Hardness and microstructure of AISI 409M ferritic stainless joints fabricated by duplex stainless steel filler metal, Journal of Iron and Steel Research, International 16/5 (2009) 66-72.
  • [21] C. Meran, O. Canyurt, Friction Stir Welding of Austenitic Stainless Steels, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 432-439.
  • [22] M.B. Bilgin, C. Meran, The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels, Materials and Design 33 (2012) 376-383.
  • [23] P. Kurtyka, I. Sulima, A. Wójcicka, N. Ryłko, A. Pietras, The influence of friction stir welding process on structure and mechanical properties of the AlSiCu/SiC composites, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 339-344.
  • [24] J. Adamowski, M. Szkodo, Friction Stir Welds (FSW) of aluminium alloy AW6082-T6, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 403-406.
  • [25] Z. Barlas, H. Uzun, Microstructure and mechanical properties of friction stir butt welded dissimilar Cu/CuZn30 sheets, Journal of Achievements in Materials and Manufacturing Engineering 30/2 (2008) 182-186.
  • [26] M. Vural, A. Ogur, G. Cam, C. Ozarpa, On the friction stir welding of aluminium alloys EN AW 2024-0 and EN AW 5754-H22, Archives of Materials Science and Engineering 28/1 (2007) 49-54.
  • [27] T.H. Chen, J.R. Yang, Materials Science and Engineering A311 (2001) 28-41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7265993e-1657-49a8-a789-028869d7b787
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.