PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface Treatments Of Natural Fibres In Fibre Reinforced Composites: A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of natural fibres in fibre-reinforced composites comes with drawbacks. They are highly hydrophilic, leading to high moisture absorption and poor interfacial adhesion in matrix-reinforcement bonds. This affects the fibres’ thermal stability as well as mechanical properties, hence limiting their wider application. This paper reviewed different ways in which natural fibres have been treated to improve hydrophobicity, reinforcement-matrix interfacial adhesion and thermal stability. It will investigate. among others, treatments like alkali, acetylation, bleaching, silane, benzoylation and plasma, which have been found to improve fibre hydrophobicity. The literature reviewed showed that these methods work to improve mechanical, chemical, and morphological properties of natural fibres by removing the amorphous surface, thus allowing for more efficient load transfer on the fibre-matrix surface. Studies in the literature found alkali treatment to be the most common surface modification treatment due to its simplicity and effectiveness. However, plasma treatment has emerged due to its lower processing time and chemical consumption. A comparative analysis of other improved properties was also investigated.
Rocznik
Strony
82--89
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Department of Mechanical, Energy and Industrial Engineering, Faculty of Engineering and Technology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
  • Department of Mechanical, Energy and Industrial Engineering, Faculty of Engineering and Technology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
  • Department of Mechanical, Energy and Industrial Engineering, Faculty of Engineering and Technology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
Bibliografia
  • 1. Candido V, da Silva A, Simonassi NT, da Luz F, Monteiro S N. Toughness of Polyester Matrix Composites Reinforced with Sugarcane Bagasse Fibers Evaluated by Charpy Impact Tests. J. Mater. Res. Technol 2017; 6, 4: 334–338. DOI: 10.1016/j.jmrt.2017.06.001.
  • 2. Pokhriyal M, Prasad L, Rakesh PK, Raturi HP. Influence of Fiber Loading on Physical and Mechanical Properties of Himalayan Nettle Fabric Reinforced Polyester Composite. Mater. Today Proc. 2018; 5, 9: 16973–16982. DOI: 10.1016/j.matpr.2018.04.101.
  • 3. Khakpour H, Ayatollahi MR, Akhavan-Safar A, da Silva LFM. Mechanical Properties of Structural Adhesives Enhanced with Natural Date Palm Tree Fibers: Effects of Length, Density and Fiber Type. Compos. Struct. 2020; 237, January: 111950. DOI: 10.1016/j.compstruct.2020.111950.
  • 4. Rajaee P, Ashenai Ghasemi F, Fasihi M, Saberian M. Effect of Styrene-Butadiene Rubber and Fumed Silica Nano-Filler on the Microstructure and Mechanical Properties of Glass Fiber Reinforced Unsaturated Polyester Resin. Compos. Part B Eng., 2019; 173, November 2018: 106803. DOI: 10.1016/j.compositesb.2019.05.014.
  • 5. Karthi N, Kumaresan K, Sathish S, Gokulkumar S, Prabhu L, Vigneshkumar N. An Overview: Natural Fiber Reinforced Hybrid Composites, Chemical Treatments and Application Areas. Mater. Today Proc. 2020; 27: 2828–2834. DOI: 10.1016/j.matpr.2020.01.011.
  • 6. Madhu P, Sanjay MR, Jawaid M, Siengchin S, Khan A, Pruncu CI. A New Study on Effect of Various Chemical Treatments on Agave Americana Fiber for Composite Reinforcement: Physico-Chemical, Thermal, Mechanical and Morphological Properties. Polym. Test. 2020; 85, February: 106437. DOI: 10.1016/j.polymertesting.2020.106437.
  • 7. Sangthong S, Pongprayoon T, Yanumet N. Mechanical Property Improvement of Unsaturated Polyester Composite Reinforced with Admicellar-Treated Sisal Fibers. Compos. Part A Appl. Sci. Manuf. 2009; 40, 6–7: 687–694. DOI: 10.1016/j.compositesa.2008.12.004.
  • 8. El-Sabbagh A. Effect of Coupling Agent on Natural Fiber in Natural Fiber/Polypropylene Composites on Mechanical and Thermal Behavior. Compos. Part B Eng. 2014; 57: 126–135. DOI: 10.1016/j.compositesb.2013.09.047.
  • 9. Oushabi A, Sair S, Oudrhiri Hassani F, Abboud Y, Tanane O, El Bouari A. The Effect of Alkali Treatment on Mechanical, Morphological and Thermal Properties of Date Palm Fibers (Dpfs): Study of the Interface of DPF–Polyurethane Composite. South African J. Chem. Eng. 2017; 23: 116–123. DOI 10.1016/j.sajce.2017.04.005.
  • 10. Pereira da Silva JS, Farias da Silva JM, Soares BG, Livi S. Fully Biodegradable Composites Based on Poly(Butylene Adipate-Co-Terephthalate)/Peach Palm Trees Fiber. Compos. Part B Eng. 2017; 129: 117–123. DOI: 10.1016/j.compositesb.2017.07.088.
  • 11. Lassoued M, Mnasri T, Hidouri A, Ben Younes R. Thermomechanical Behavior of Tunisian Palm Fibers Before and After Alkalization. Constr. Build. Mater. 2018; 170: 121–128. DOI: 10.1016/j.conbuildmat.2018.03.070.
  • 12. Lausund KB, Johnsen BB, Rahbek DB, Hansen FK. Surface Treatment of Alumina Ceramic for Improved Adhesion to a Glass Fiber-Reinforced Polyester Composite. Int. J. Adhes. Adhes. 2015; 63: 34–45. DOI: 10.1016/j.ijadhadh.2015.07.015.
  • 13. Dorez G, Ferry L, Sonnier R, Taguet A, Lopez-Cuesta JM. Effect of Cellulose, Hemicellulose and Lignin Contents on Pyrolysis and Combustion of Natural Fibers. J. Anal. Appl. Pyrolysis 2014; 107: 323–331. DOI: 10.1016/j.jaap.2014.03.017.
  • 14. Ouarhim W, Zari N, Bouhfid R, Qaiss A. Mechanical Performance of Natural Fibers-Based Thermosetting Composites. Mech. Phys. Test. Biocomposites, Fiber-Reinforced Compos. Hybrid Compos. 2018; 43–60, , DOI: 10.1016/B978-0-08-102292-4.00003-5.
  • 15. Ilangovan M, Guna ., Prajwal B, Jiang Q, Reddy N. Extraction and Characterisation of Natural Cellulose Fibers from Kigelia Africana. Carbohydr. Polym. 2020; 236, November 2019: 115996. DOI: 10.1016/j.carbpol.2020.115996.
  • 16. Godara M. Effect of Chemical Modification of Fiber Surface on Natural Fiber Composites: A Review. Mater. Today Proc. 2019; 18: 3428–3434. DOI: 10.1016/j.matpr.2019.07.270.
  • 17. Kumar GA, Rameshbabu AM, Kumar TR, Parameswaran P. Materials Today: Proceedings Mechanical Advancements of Natural Fiber Composites Due to Change in Length. Mater. Today Proc. 2020; no. xxxx: 9–11. DOI: 10.1016/j.matpr.2020.09.428.
  • 18. Vigneshwaran S. et al. Recent Advancement in the Natural Fiber Polymer Composites: A Comprehensive Review. J. Clean. Prod. 2020; 277: 124109. DOI: 10.1016/j.jclepro.2020.124109.
  • 19. Chaudhary V, Ahmad F. A Review on Plant Fiber Reinforced Thermoset Polymers for Structural and Frictional Composites. Polym. Test. 2020; 91, May: 106792. DOI: 10.1016/j.polymertesting..106792.
  • 20. Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007; 15, 1: 25–33. DOI: 10.1007/s10924-006-0042-3.
  • 21. Mahesha GT, Shenoy SB, Kini VM, Padmaraja NH. Effect of Fiber Treatments on Mechanical Properties of Grewia Serrulata Bast Fiber Reinforced Polyester Composites. Mater. Today Proc. 2018; 5, 1: 138–144. DOI: 10.1016/j.matpr.2017.11.064.
  • 22. Kim JT, Netravali AN. Mercerization of Sisal Fibers: Effect of Tension on Mechanical Properties of Sisal Fiber and Fiber-Reinforced Composites. Compos. Part A Appl. Sci. Manuf. 2010; 41, 9: 1245–1252. DOI: 10.1016/j.compositesa.2010.05.007.
  • 23. Ariawan D, Rivai TS, Surojo E, Hidayatulloh S, Akbar HI, Prabowo AR. Effect of Alkali Treatment of Salacca Zalacca Fiber (SZF) on Mechanical Properties of HDPE Composite Reinforced with SZF. Alexandria Eng. J. 2020; 59, 5: 3981–3989. DOI: 10.1016/j.aej.2020.07.005.
  • 24. Ganapathy T, Sathiskumar R, Senthamaraikannan P, Saravanakumar SS, Khan A. Characterization of Raw and Alkali Treated New Natural Cellulosic Fibers Extracted from the Aerial Roots of Banyan Tree. Int. J. Biol. Macromol. 2019; 138: 573–581. DOI: 10.1016/j.ijbiomac.2019.07.136.
  • 25. Petchwattana N. Covavisaruch S. Mechanical and Morphological Properties of Wood Plastic Biocomposites Prepared from Toughened Poly(Lactic Acid) and Rubber Wood Sawdust (Hevea Brasiliensis). J. Bionic Eng. 2014; 11, 4: 630–637. DOI: 10.1016/S1672-6529(14)60074-3.
  • 26. Sharan U, Dhamarikar M, Dharkar A, Chaturvedi S, Tiwari S. Materials Today: Proceedings Surface Modification of Banana Fiber: A Review. Mater. Today Proc. 2020; no. xxxx: 5–10. DOI: 10.1016/j.matpr.2020.07.217.
  • 27. Safri SNA., Sultan MTH, Jawaid M, Abdul Majid MS. Analysis of Dynamic Mechanical, Low-Velocity Impact and Compression after Impact Behaviour of Benzoyl Treated Sugar Palm/Glass/Epoxy Composites. Compos. Struct. 2019; 226, January. DOI: 10.1016/j.compstruct.2019.111308.
  • 28. Mohd Izwan S, Sapuan SM, Zuhri MYM, Mohamed AR. Effects of Benzoyl Treatment on NaOH Treated Sugar Palm Fiber: Tensile, Thermal, and Morphological Properties. J. Mater. Res. Technol. 2020; 9, 3: 5805–5814. DOI: 10.1016/j.jmrt.2020.03.105.
  • 29. Kumneadklang S, Thong S O-, Larpkiattaworn S. Characterization of Cellulose Fiber Isolated from Oil Palm Frond Biomass. Mater. Today Proc. 2019; 17: 1995–2001. DOI: 10.1016/j.matpr.2019.06.247.
  • 30. Johar N, Ahmad I, Dufresne A. Extraction, Preparation and Characterization of Cellulose Fibers and Nanocrystals from Rice Husk. Ind. Crops Prod. 2012; 37, 1: 93–99. DOI: 10.1016/j.indcrop.2011.12.016.
  • 31. Ferreira DP, Cruz J, Fangueiro R. Surface Modification of Natural Fibers in Polymer Composites. Elsevier Ltd, 2018.
  • 32. Senthilraja R, Sarala R., Godwin Antony A, Seshadhri. Effect of acetylation technique on mechanical behavior and durability of palm fiber vinyl-ester composites. Mater. Today Proc. 2020; 21: 634–637. DOI: 10.1016/j.matpr.2019.06.729.
  • 33. Fitch-Vargas PR et al, Mechanical, Physical and Microstructural Properties of Acetylated Starch-Based Biocomposites Reinforced with Acetylated Sugarcane Fiber Carbohydr. Polym. 2019; 219, May: 378–386. DOI: 10.1016/j.carbpol.2019.05.043.
  • 34. Daud S, Ismail H, Bakar AA. The Effect of 3-aminopropyltrimethyoxysilane (AMEO) as a Coupling Agent on Curing and Mechanical Properties of Natural Rubber/Palm Kernel Shell Powder Composites. Procedia Chem. 2016; 19: 327–334. DOI: 10.1016/j.proche.2016.03.019.
  • 35. Radotić K, Simić-Krstić J, Jeremić M, Trifunović M. A Study of Lignin Formation at the Molecular Level by Scanning Tunneling Microscopy. Biophys. J. 1994; 66, 6: 1763–1767. DOI: 10.1016/S0006-3495(94)81007-0.
  • 36. Asim M, Jawaid M, Abdan K, Ishak MR. Effect of Alkali and Silane Treatments on Mechanical and Fiber-Matrix Bond Strength of Kenaf and Pineapple Leaf Fibers. J. Bionic Eng. 2016; 13, 3: 426–435. DOI: 10.1016/S1672-6529(16)60315-3.
  • 37. Orue A, Jauregi A, Unsuain U, Labidi J, Eceiza A, Arbelaiz A. The Effect of Alkaline and Silane Treatments on Mechanical Properties and Breakage of Sisal Fibers and Poly(Lactic Acid)/Sisal Fiber Composites. Compos. Part A Appl. Sci. Manuf. 2016; 84: 186–195. DOI: 10.1016/j.compositesa.2016.01.021.
  • 38. Liu Y, Xie J, Wu N, Wang L, Ma Y, Tong J. Influence of Silane Treatment on the Mechanical, Tribological and Morphological Properties of Corn Stalk Fiber Reinforced Polymer Composites. Tribol. Int. 2019; 131, September 2018: 398–405. DOI: 10.1016/j.triboint.2018.11.004.
  • 39. Gupta US. et al. Plasma Modification of Natural Fiber: A Review. Mater. Today Proc. 2020; 43: 451–457. DOI: 10.1016/j.matpr.2020.11.973.
  • 40. Sun D. Surface Modification of Natural Fibers Using Plasma Treatment. Biodegrad. Green Compos. 2016; December: 18–39. DOI: 10.1002/9781118911068.ch2.
  • 41. Valášek P, Müller M, Šleger V. Influence of Plasma Treatment on Mechanical Properties of Cellulose-Based Fibers and their Interfacial Interaction in Composite Systems. BioResources 2017; 12, 3: 5449–5461. DOI: 10.15376/biores.12.3.5449-5461.
  • 42. Rajwin AJ, Prakash C. Effect of Air Plasma Treatment on Thermal Comfort Properties of Woven Fabric. Int. J. Thermophys. 2017; 38, 11. DOI: 10.1007/s10765-017-2299-2
  • 43. Zhou Z, et al. Hydrophobic Surface Modification of Ramie Fibers with Ethanol Pretreatment and Atmospheric Pressure Plasma Treatment Surf. Coatings Technol. 2011;. 205, 17–18: 4205–4210. DOI: 10.1016/j.surfcoat.2011.03.022.
  • 44. Macedo MJP, Mattos ALA, Costa THC, Feitor MC, Ito EN, Melo JDD. Effect of Cold Plasma Treatment on Recycled Polyethylene/Kapok Composites Interface Adhesion. Compos. Interfaces 2019; 26, 10: 871–886. DOI: 10.1080/09276440.2018.1549892.
  • 45. Cai M, Takagi H, Nakagaito AN, Li Y, Waterhouse GIN. Effect of Alkali Treatment on Interfacial Bonding in Abaca Fiber-Reinforced Composites. Compos. Part A Appl. Sci. Manuf., 2016; 90: 589–597. DOI: 10.1016/j.compositesa.2016.08.025.
  • 46. Yan L, Chouw N, Huang L, Kasal B. Effect of Alkali Treatment on Microstructure and Mechanical Properties of Coir Fibers, Coir Fiber Reinforced-Polymer Composites and Reinforced-Cementitious Composites. Constr. Build. Mater. 2016; 112: 168–182. DOI: 10.1016/j.conbuildmat.2016.02.182.
  • 47. Bessa W, Trache D, Derradji M, Tarchoun AF. Morphological, Thermal and Mechanical Properties of Benzoxazine Resin Reinforced with Alkali Treated Alfa Fibers. Ind. Crops Prod. 2021; 165, March: 113423. DOI: 10.1016/j.indcrop.2021.113423.
  • 48. Azlina Ramlee N, Jawaid M, Abdul Karim Yamani S, Syams Zainudin E, Alamery S. Effect of Surface Treatment on Mechanical, Physical And Morphological Properties of Oil Palm/Bagasse Fiber Reinforced Phenolic Hybrid Composites for Wall Thermal Insulation Application. Constr. Build. Mater. 2021; 276: 122239. DOI: 10.1016/j.conbuildmat.2020.122239.
  • 49. Dawit JB, Lemu HG, Regassa Y, Akessa AD. Materials Today: Proceedings Investigation of the Mechanical Properties of Acacia Tortilis Fiber Reinforced Natural Composite. Mater. Today Proc. 2021; 38: 2953–2958. DOI: 10.1016/j.matpr.2020.09.308.
  • 50. Prabhu L. et al. Materials Today: Proceedings Experimental Investigation on Mechanical Properties of Flax /Banana / Industrial Waste Tea Leaf Fiber Reinforced Hybrid Polymer Composites. Mater. Today Proc. 2021; 45: 8136–8143. DOI: 10.1016/j.matpr.2021.02.111.
  • 51. Vinod A. et al. Novel Muntingia Calabura Bark Fiber Reinforced Green-Epoxy Composite: A Sustainable and Green Material For Cleaner Production. J. Clean. Prod. 2021; 294: 126337. DOI: 10.1016/j.jclepro.2021.126337.
  • 52. Hill CAS, Khalil HPSA, Hale MD. A Study of the Potential of Acetylation to Improve the Properties of Plant Fibers. Industrial Crops and Products 1998; 8(1): 53–63. DOI:10.1016/S0926-6690(97)10012-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7264d954-691d-4a33-afb3-e7a0a5a2fbc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.