Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ głębokości i częstotliwości igłowania na wydajność izolacji termicznej wstępnie utlenionych filców
Języki publikacji
Abstrakty
In this paper, the influence of the needle depth and frequency on the thermal insulation performance of pre-oxidised fibre felts was mainly investigated. The results showed that pre-oxidised fibre felts of a needle depth of 8 mm at a room temperature and working temperature of 100-200 °C had the best thermal insulation performance, while fibre for those of different needle depths with increasing temperature, the steady-state temperature difference increased linearly. With an increasing needle frequency, the thickness and gram weight of the pre-oxidised fibre felts showed a decreasing trend, while the coefficient of thermal conductivity exhibited an increasing one. For pre-oxidised fibre felts of different needle frequencies with increasing temperature, the steady-state temperature difference showed a linearly increasing trend.
W pracy zbadano wpływ głębokości i częstotliwości igłowania na wydajność izolacji termicznej wstępnie utlenionych filców. Wyniki wykazały, że wstępnie utlenione filce igłowane na głębokość 8 mm w temperaturze pokojowej i temperaturze roboczej 100-200 °C miały najlepszą izolację termiczną. Wraz ze wzrostem częstotliwości igłowania grubość i gramatura wstępnie utlenionych filców wykazywały tendencję spadkową, podczas gdy współczynnik przewodności cieplnej wzrastał. W przypadku wstępnie utlenionych filców różnych częstotliwościach igłowania ze wzrostem temperatury różnica temperatur w stanie ustalonym wykazywała liniowo rosnący trend.
Słowa kluczowe
Czasopismo
Rocznik
Strony
57--66
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- University, School of Textile Science and Engineering, Tianjin 300387, P.R. China
- Tiangong University, Tianjin Key Laboratory of Advanced Textile Composites, Tianjin 300387, P.R. China
- Tianjin Key Laboratory of Advanced Fibre and Energy Storage Technology, Tianjin 300387, P.R. China
autor
- University, School of Textile Science and Engineering, Tianjin 300387, P.R. China
- Tiangong University, Tianjin Key Laboratory of Advanced Textile Composites, Tianjin 300387, P.R. China
- Tianjin Key Laboratory of Advanced Fibre and Energy Storage Technology, Tianjin 300387, P.R. China
autor
- University, School of Textile Science and Engineering, Tianjin 300387, P.R. China
autor
- University, School of Textile Science and Engineering, Tianjin 300387, P.R. China
- Tiangong University, Tianjin Key Laboratory of Advanced Textile Composites, Tianjin 300387, P.R. China
- Tianjin Key Laboratory of Advanced Fibre and Energy Storage Technology, Tianjin 300387, P.R. China
Bibliografia
- 1. Zhu DJ, Ma T, Liu WH. Experimental study on electrical heating technology utilizing carbon fiber tape. Journal of Hunan University (Natural Sciences) 2016; 43: 131-136.
- 2. Frid SE, Arsatov AV, Oshchepkov MY. Engineering Solutions for Polymer Composites Solar Water Heaters Production. Thermal Engineering 2016; 63: 399-403.
- 3. Ghelich R, Aghdam RM, Torknik FS, Jahannama MR, Keyanpour-Rad M. Carbothermal Reduction Synthesis of Zrb2 Nanofibers via Pre-Oxidized Electrospun Zirconium N-Propoxide. Ceramics International 2015; 41: 6905-6911.
- 4. Alam M, Singh H, Suresh S, Redpath DAG. Energy and Economic Analysis of Vacuum Insulation Panels (VIPS) used in Non-Domestic Buildings. Applied Energy 2017; 188: 1-8.
- 5. Liu YJ, Sun JR, Zhao XM. A Study of the Development and Properties of Carbon Fiber Bulk Yarns. Journal of the Textile Institute 2019; 110(8): 1152-1158.
- 6. Zhao X, Liu Y, Liu G. Production of Carbon Fibre Bulked Yarns by the Airflow Dispersion Method. FIBRES & TEXTILES in Eastern Europe 2017; 25, 6(126): 34-40. DOI: 10.5604/01.3001.0010.5366.
- 7. Liu SP, Han KQ, Chen L, Zheng Y, Yu MH. Influence of Air Circulation on the Structure and Properties of Melt-Spun PAN Precursor Fibers During Thermal Oxidation. RSC Advances 2015; 5: 37669-37674.
- 8. Tomboulian BN, Hyers RW. Predicting the Effective Emissivity of an Array of Aligned Carbon Fibers using the Reverse Monte Carlo Ray-Tracing Method. Journal of Heat Transfer-transactions of the Asme 2017; 139, 012701.
- 9. Vo LTT, Navard P. Treatments of Plant Biomass for Cementitious Building Materials – A Review. Construction and Building Materials 2016; 121: 161-176.
- 10. Takahashi F, Abbott A, Murray TM, T’ien J S, Olson S L. Thermal Response Characteristics of Fire Blanket Materials. Fire and Materials 2014; 38, 609-638.
- 11. Trautwein G, Plaza-Recobert M, Alcaniz-Monge J. Unusual Pre-Oxidized Polyacrylonitrile Fibres Behaviour Against their Activation with CO2: Carbonization Effect. Adsorption-Journal of The International Adsorption Society, 2016; 22: 223-231.
- 12. Zhai YJ, Peng ZJ, Ren XB, Wang CH, Qi LH, Miao HZ. Effect of in-Situ Transformed Pre-Oxidized Polyacrylonitrile Fibers on the Microstructure and Mechanical Properties of Ticn-Based Cermets. Rare Metal Materials and Engineering 2015; 44, 731-734.
- 13. Williams J, Lawrence M, Walker P. A Method for the Assessment of the Internal Structure of Bio-Aggregate Concretes. Construction and Building Materials 2016; 116, 45-51.
- 14. Zargham S, Bazgir S, Katbab A A, Rashidi A. High-Quality Carbon Nanofiber -Based Chemically Preoxidized Electrospun Nanofiber. Fullerenes, Nanotubes and Carbon Nanostructures 2015; 23: 1008-1017.
- 15. Cheng HM, Hong CQ, Zhang XH, Xue HF, Meng SH, Han JC. Super Flame -Retardant Lightweight Rime-Like Carbon-Phenolic Nanofoam. Scientific Reports, 2016; 6, 33480.
- 16. Zhao X, Liu Y, Liang T. Influence of the Needle Number on the Heat Insulation Performance of Pre-oxidized Fibre Felts. FIBRES & TEXTILES in Eastern Europe 2018; 26, 3(129): 80-86. DOI: 10.5604/01.3001.0011.7307.
- 17. Liu YJ, Liu XL, Li JM, Liang TL, Zhao XM. A Study of the Heat Insulation Performance of Pre-Oxidized Fiber Felts of Silica Aerogel/Silicon Carbide Composite Coatings. Journal of the Textile Institute 2019; 110(9): 1293-1298.
- 18. Cheng HM, Xue HF, Hong CQ, Zhang XH. Preparation, Mechanical, Thermal And Ablative Properties of Lightweight Needled Carbon Fibre Felt/Phenolic Resin Aerogel Composite with a Bird’s Nest Structure. Composites Science and Technology 2017; 140, 63-72.
- 19. Gao LL, Lu HY, Lin HB, Sun XY, Xu JL, Liu DC, Li Y. KOH Direct Activation for Preparing Activated Carbon Fiber from Polyacrylonitrile-Based Pre-Oxidized Fiber. Chemical Research in Chinese Universities 2014; 30, 441-446.
- 20. Gao C, Huang L, Yan LB, Kasal B, Li WG. Behavior of Glass and Carbon FRP Tube Encased Recycled Aggregate Concrete with Recycled Clay Brick Aggregate. Composite Strcutures 2016; 155: 245-254.
- 21. Liu SP, Han KQ, Chen L, Zheng Y, Yu MH, Li JQ, Yang Z. Influence of External Tension on the Structure and Properties of Melt-Spun PAN Precursor Fibers During Thermal Oxidation. Macromolecular Materials and Engineering 2015; 300: 1001-1009.
- 22. Shakir AS, Guan ZW, Jones SW. Lateral Impact Response of the Concrete Filled Steel Tube Columns with and without CFRP Strengthening. Engineering Structures 2016; 116: 148-162.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7263be70-8b84-442f-8bd9-8cf4593d0eaa