PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Needle Depth and Frequency on the Thermal Insulation Performance of Pre-Oxidised Fibre Felts

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ głębokości i częstotliwości igłowania na wydajność izolacji termicznej wstępnie utlenionych filców
Języki publikacji
EN
Abstrakty
EN
In this paper, the influence of the needle depth and frequency on the thermal insulation performance of pre-oxidised fibre felts was mainly investigated. The results showed that pre-oxidised fibre felts of a needle depth of 8 mm at a room temperature and working temperature of 100-200 °C had the best thermal insulation performance, while fibre for those of different needle depths with increasing temperature, the steady-state temperature difference increased linearly. With an increasing needle frequency, the thickness and gram weight of the pre-oxidised fibre felts showed a decreasing trend, while the coefficient of thermal conductivity exhibited an increasing one. For pre-oxidised fibre felts of different needle frequencies with increasing temperature, the steady-state temperature difference showed a linearly increasing trend.
PL
W pracy zbadano wpływ głębokości i częstotliwości igłowania na wydajność izolacji termicznej wstępnie utlenionych filców. Wyniki wykazały, że wstępnie utlenione filce igłowane na głębokość 8 mm w temperaturze pokojowej i temperaturze roboczej 100-200 °C miały najlepszą izolację termiczną. Wraz ze wzrostem częstotliwości igłowania grubość i gramatura wstępnie utlenionych filców wykazywały tendencję spadkową, podczas gdy współczynnik przewodności cieplnej wzrastał. W przypadku wstępnie utlenionych filców różnych częstotliwościach igłowania ze wzrostem temperatury różnica temperatur w stanie ustalonym wykazywała liniowo rosnący trend.
Rocznik
Strony
57--66
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • University, School of Textile Science and Engineering, Tianjin 300387, P.R. China
  • Tiangong University, Tianjin Key Laboratory of Advanced Textile Composites, Tianjin 300387, P.R. China
  • Tianjin Key Laboratory of Advanced Fibre and Energy Storage Technology, Tianjin 300387, P.R. China
autor
  • University, School of Textile Science and Engineering, Tianjin 300387, P.R. China
  • Tiangong University, Tianjin Key Laboratory of Advanced Textile Composites, Tianjin 300387, P.R. China
  • Tianjin Key Laboratory of Advanced Fibre and Energy Storage Technology, Tianjin 300387, P.R. China
  • University, School of Textile Science and Engineering, Tianjin 300387, P.R. China
  • University, School of Textile Science and Engineering, Tianjin 300387, P.R. China
  • Tiangong University, Tianjin Key Laboratory of Advanced Textile Composites, Tianjin 300387, P.R. China
  • Tianjin Key Laboratory of Advanced Fibre and Energy Storage Technology, Tianjin 300387, P.R. China
Bibliografia
  • 1. Zhu DJ, Ma T, Liu WH. Experimental study on electrical heating technology utilizing carbon fiber tape. Journal of Hunan University (Natural Sciences) 2016; 43: 131-136.
  • 2. Frid SE, Arsatov AV, Oshchepkov MY. Engineering Solutions for Polymer Composites Solar Water Heaters Production. Thermal Engineering 2016; 63: 399-403.
  • 3. Ghelich R, Aghdam RM, Torknik FS, Jahannama MR, Keyanpour-Rad M. Carbothermal Reduction Synthesis of Zrb2 Nanofibers via Pre-Oxidized Electrospun Zirconium N-Propoxide. Ceramics International 2015; 41: 6905-6911.
  • 4. Alam M, Singh H, Suresh S, Redpath DAG. Energy and Economic Analysis of Vacuum Insulation Panels (VIPS) used in Non-Domestic Buildings. Applied Energy 2017; 188: 1-8.
  • 5. Liu YJ, Sun JR, Zhao XM. A Study of the Development and Properties of Carbon Fiber Bulk Yarns. Journal of the Textile Institute 2019; 110(8): 1152-1158.
  • 6. Zhao X, Liu Y, Liu G. Production of Carbon Fibre Bulked Yarns by the Airflow Dispersion Method. FIBRES & TEXTILES in Eastern Europe 2017; 25, 6(126): 34-40. DOI: 10.5604/01.3001.0010.5366.
  • 7. Liu SP, Han KQ, Chen L, Zheng Y, Yu MH. Influence of Air Circulation on the Structure and Properties of Melt-Spun PAN Precursor Fibers During Thermal Oxidation. RSC Advances 2015; 5: 37669-37674.
  • 8. Tomboulian BN, Hyers RW. Predicting the Effective Emissivity of an Array of Aligned Carbon Fibers using the Reverse Monte Carlo Ray-Tracing Method. Journal of Heat Transfer-transactions of the Asme 2017; 139, 012701.
  • 9. Vo LTT, Navard P. Treatments of Plant Biomass for Cementitious Building Materials – A Review. Construction and Building Materials 2016; 121: 161-176.
  • 10. Takahashi F, Abbott A, Murray TM, T’ien J S, Olson S L. Thermal Response Characteristics of Fire Blanket Materials. Fire and Materials 2014; 38, 609-638.
  • 11. Trautwein G, Plaza-Recobert M, Alcaniz-Monge J. Unusual Pre-Oxidized Polyacrylonitrile Fibres Behaviour Against their Activation with CO2: Carbonization Effect. Adsorption-Journal of The International Adsorption Society, 2016; 22: 223-231.
  • 12. Zhai YJ, Peng ZJ, Ren XB, Wang CH, Qi LH, Miao HZ. Effect of in-Situ Transformed Pre-Oxidized Polyacrylonitrile Fibers on the Microstructure and Mechanical Properties of Ticn-Based Cermets. Rare Metal Materials and Engineering 2015; 44, 731-734.
  • 13. Williams J, Lawrence M, Walker P. A Method for the Assessment of the Internal Structure of Bio-Aggregate Concretes. Construction and Building Materials 2016; 116, 45-51.
  • 14. Zargham S, Bazgir S, Katbab A A, Rashidi A. High-Quality Carbon Nanofiber -Based Chemically Preoxidized Electrospun Nanofiber. Fullerenes, Nanotubes and Carbon Nanostructures 2015; 23: 1008-1017.
  • 15. Cheng HM, Hong CQ, Zhang XH, Xue HF, Meng SH, Han JC. Super Flame -Retardant Lightweight Rime-Like Carbon-Phenolic Nanofoam. Scientific Reports, 2016; 6, 33480.
  • 16. Zhao X, Liu Y, Liang T. Influence of the Needle Number on the Heat Insulation Performance of Pre-oxidized Fibre Felts. FIBRES & TEXTILES in Eastern Europe 2018; 26, 3(129): 80-86. DOI: 10.5604/01.3001.0011.7307.
  • 17. Liu YJ, Liu XL, Li JM, Liang TL, Zhao XM. A Study of the Heat Insulation Performance of Pre-Oxidized Fiber Felts of Silica Aerogel/Silicon Carbide Composite Coatings. Journal of the Textile Institute 2019; 110(9): 1293-1298.
  • 18. Cheng HM, Xue HF, Hong CQ, Zhang XH. Preparation, Mechanical, Thermal And Ablative Properties of Lightweight Needled Carbon Fibre Felt/Phenolic Resin Aerogel Composite with a Bird’s Nest Structure. Composites Science and Technology 2017; 140, 63-72.
  • 19. Gao LL, Lu HY, Lin HB, Sun XY, Xu JL, Liu DC, Li Y. KOH Direct Activation for Preparing Activated Carbon Fiber from Polyacrylonitrile-Based Pre-Oxidized Fiber. Chemical Research in Chinese Universities 2014; 30, 441-446.
  • 20. Gao C, Huang L, Yan LB, Kasal B, Li WG. Behavior of Glass and Carbon FRP Tube Encased Recycled Aggregate Concrete with Recycled Clay Brick Aggregate. Composite Strcutures 2016; 155: 245-254.
  • 21. Liu SP, Han KQ, Chen L, Zheng Y, Yu MH, Li JQ, Yang Z. Influence of External Tension on the Structure and Properties of Melt-Spun PAN Precursor Fibers During Thermal Oxidation. Macromolecular Materials and Engineering 2015; 300: 1001-1009.
  • 22. Shakir AS, Guan ZW, Jones SW. Lateral Impact Response of the Concrete Filled Steel Tube Columns with and without CFRP Strengthening. Engineering Structures 2016; 116: 148-162.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7263be70-8b84-442f-8bd9-8cf4593d0eaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.