Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study is to describe the fire safety paradigm using the concept of T. Kuhn, its components, and its role and significance for the further development of construction science, particularly the fire safety of buildings. The components of the fire safety paradigm form a complex structure (system) that is presented graphically to illustrate the interconnections and interactions between them. This structure is built by analogy with a three-dimensional coordinate system using linguistic quantities. Currently, it is not yet possible to assign a sequence of numbers representing the coordinates of a point in the space of this system. The three axes of this system determine the major groups of paradigm elements: – fire safety; – components; – activities and inputs. For each group, the components were distinguished and then briefly described and characterized, emphasizing their mutual connections and importance for the fire safety of buildings. Some significant gaps in the systemic approach to fire safety in the EU were discussed and illustrated by the example of the Grenfell Tower fire in London. The paradigm described is universal, and its universality is based on the possession of certain common attributes characteristic of the fire safety environment and their interpretation, as well as on the manner in which fire safety entities implement them. A paradigm shift will result in the introduction of a fire toxicity criterion for the assessment of construction products, which, for unknown reasons, has so far only been implemented in relation to cables. The second necessary amendment is the addition of a requirement for the spread of fires on building facades.
Rocznik
Tom
Strony
art. no. e152606
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Building Research Institute, Warszawa, Poland
Bibliografia
- [1] T.S. Kuhn, The Structure of Scientific Revolutions, Chicago, IL, USA: UChi Press, 1962.
- [2] Ł. Sadowski, J. Hoła, L. Czarnecki, and T.G. Mathia, “New paradigm in the metrology of concrete surface morphology: Methods, parameters and applications,” Measurement, vol. 169, p. 108497, 2021, doi: 10.1016/j.measurement.2020.108497.
- [3] J. Gryz, “Współczesny paradygmat bezpieczeństwa międzynarodowego. (The Contemporary Paradigm of International Security),” Rocznik Bezpieczeństwa Międzynarodowego, Wrocław, Poland, 2006, pp. 12–27, doi: 10.34862/rbm.2006.2 (in Polish).
- [4] D. Morgan, “Paradigms lost and pragmatism regained: methodological implications of combining qualitative and quantitative methods,” J. Mixed Methods Res., vol. 1, no. 1, pp. 48–76, 2007, doi: 10.1177/2345678906292462.
- [5] V. Babrauskas, “Some neglected areas in fire safety engineering,” J-STAGE, vol. 32, no. 1, pp. 35–48, 2023, doi: 10.3210/fst.32.35.
- [6] Regulation of the European Parliament and of the Council (UE) Nr 305/2011 Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Directive 89/106/EEC. OJEU, 2011, [Online], Available: https://isap.sejm.gov.pl>WDU20210001213 [Access: 04.01.2023].
- [7] Accelerating the Development of the Sustainable Construction Market in Europe, COM-860, 2007, [Online], Available: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal [Access: 03.02.2024].
- [8] L. Czarnecki and M. Kaproń, “Sustainable Construction as a Research Area,” Int. J. Soc. Mater. Eng. Resour., vol. 17, no. 2, pp. 99–106, 2010, doi: 10.5188/ijsmer.17.99.
- [9] M. Abramowicz and R.G. Adamski, Bezpieczeństwo pożarowe budynków. Część I. (Fire safety of buildings. Part I), SGSP, Warszawa, Poland, 2002 (in Polish).
- [10] M. McLaggan et al., “Towards a better understanding of fire performance assessment of façade systems: Current situation and a proposed new assessment framework,” Constr. Build. Mater., vol. 300, p. 124301, 2021, doi: 10.1016/j.conbuildmat.2021.124301.
- [11] D. Drysdale, An introduction to fire dynamics. New York, USA: Willey, 2011.
- [12] J.G. Quintiere, Fundamentals of Fire Phenomena, New York, USA: Wiley, 2006.
- [13] V. Babrauskas, Ignition Handbook, Issaquah, USA: Fire Sci. Pub., 2003.
- [14] G. Cox. Combustion Fundamentals of Fire. London, UK, San Diego, USA: Academic Press, 1995.
- [15] W. Węgrzyński, P. Antosiewicz, and J. Fangrat, “Multi-Wavelength Densitometer for Experimental Research on the Optical Characteristics of Smoke Layers,” Fire Technol., vol. 57, pp. 2683–2706, 2021, doi: 10.1007/s10694-021-01139-5.
- [16] P. Antosiewicz and J. Fangrat, “Wpływ warunków pożarowych na natężenie oświetlenia ewakuacyjnego (Influence of fire conditions on illuminance of evacuation lighting),” in Proc. XXVII KKO Tech. Świetlna, Poland, 2018 (in Polish).
- [17] T.R. Hull and A. Stec, “Introduction to Fire Toxicity,” in Fire Toxicity T.R. Hull, A. Stec, Eds., Cambridge, UK: Woodhead, 2010, pp. 1–25, doi: 10.1533/9781845698072.1.3.
- [18] K. Kaczorek-Chrobak and J. Fangrat, “PVC-Based Copper Electric Wires under Various Fire Conditions: Toxicity of Fire Effluents,” Materials, vol. 13, no. 5, p. 1111, 2020, doi: 10.3390/ma13051111.
- [19] X. Huang et al., “A global model for heat release rate prediction of cable burning on vertical cable tray in different fire scenarios,” Fire Technol., vol. 58, no. 5, pp. 3119–3138, 2022, doi: 10.1007/s10694-022-01304-4.
- [20] EN 13501-1 Fire classification of construction products and building elements – Part 1: Classification using test data from reaction to fire tests. CEN, Brussels.
- [21] EN 13501-2 Fire classification of construction products and building elements – Part 2: Classification using data from fire resistance tests, excluding ventilation services. CEN, Brussels.
- [22] “Masters’ by Research in Sustainable Construction & Infrastructure. University of Strathclyde,” [Online], Available: https://www.strath.ac.uk [Access: 12.03.2024].
- [23] T. Zhang, F. Ding, Z. Wang, F. Xiao, C.X. Lu, and X. Huang, “Forecasting Backdraft with Multimodal Method: Fusion of Fire Image and Sensor Data,” Eng. Appl. Artif. Intell., vol. 132, p. 107939, 2023, doi: 10.1016/j.engappai.2024.107939.
- [24] S. Bahrami and D. Zeinali, “The sustainability challenge of product information quality in the design and construction of facades: lessons from the Grenfell Tower fire,” Smart Sustain. Built Environ., vol. 12, no. 3, pp. 488–506, 2023, doi: 10.1108/SASBE-06-2021-0100.
- [25] PN-B-02867:2013-6 Ochrona przeciwpożarowa budynków. Metoda badania stopnia rozprzestrzeniania ognia przez ściany zewnętrzne od strony zewnętrznej oraz zasady klasyfikacji (Fire protection of buildings. Method of testing the fire spread rate over external walls from the outside and classification rules), PKN, Warszawa, Poland (in Polish).
- [26] J. Fangrat and M. Kosiorek, “Comparison of large and bench scale test results for external wall linings”. In: Fire safety science, M. Curtat, Ed., Proc. 6th Int. Symp., France, 2000, p. 1232.
- [27] J. Fangrat, “Poland,” in Plastics flammability handbook: Principles, regulations, testing, and approval. J. Troitzsch and E. Antonatus, Eds., Munich, Germany, Cincinnati, OH, USA: Hanser, 2021, pp. 360–368.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7263b406-8563-4294-9c72-dfa71c7c3136
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.