PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Euler–Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The response of many new metallic alloys as well as ordinary materials such as concrete is elastic and nonlinear even in the small strain range. Thus, using the classical linearized theory to determine the response of bodies could lead to a miscalculation of the stresses corresponding to the given strains, even in the small strain regime. As stresses can determine the failure of structural members, such miscalculation could be critical. We investigate the quantitative impact of the material nonlinearity in the Euler–Bernoulli type beam theory. The governing equations for the deflection are found to be nonlinear integro-differential equations, and the equations are solved numerically using a variant of the spectral collocation method. The deflection and the spatial stress distribution in the beam have been computed for two sets of models, namely the standard linearized model and some recent nonlinear models used in the literature to fit experimental data. The predictions concerning the deflection and the spatial stress distribution based on the standard linearized model and the nonlinear models are considerably different.
Rocznik
Strony
3--25
Opis fizyczny
Bibliogr. 19 poz., fot., wykr.
Twórcy
autor
  • Faculty of Mathematics and Physics Charles University in Prague Sokolovská 83 Praha 8 – Karlín CZ 186 75, Czech Republic
autor
  • Faculty of Mathematics and Physics Charles University in Prague Sokolovská 83 Praha 8 – Karlín CZ 186 75, Czech Republic
  • Texas A&M University Department of Mechanical Engineering 3123 TAMU College Station TX 77843-3123, U.S.A.
Bibliografia
  • 1. K.R. Rajagopal, On implicit constitutive theories, Appl. Math., 48, no. 4, 279–319, 2003.
  • 2. K.R. Rajagopal, The elasticity of elasticity, Z. Angew. Math. Phys., 58, no. 2, 309–317, 2007.
  • 3. A.D. Freed, D.R. Einstein, An implicit elastic theory for lung parenchyma, Int. J. Eng. Sci., 62, no. 0, 31–47, 2013.
  • 4. A.D. Freed, Soft Solids, Modeling and Simulation in Science, Engineering and Technology, Basel: Birkhäuser, 2014,
  • 5. K.R. Rajagopal, On the nonlinear elastic response of bodies in the small strain range, Acta Mech., 225, no. 6, 1545–1553, 2014.
  • 6. Z. Grasley, R. El-Helou, M. D’Ambrosia, D. Mokarem, C. Moen, K.R. Rajagopal, Model of infinitesimal nonlinear elastic response of concrete subjected to uniaxial compression, J. Eng. Mech., 141, no. 7, p. 04015008, 2015.
  • 7. T. Saito, T. Furuta, J.-H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma, Multifunctional alloys obtained via a dislocationfree plastic deformation mechanism, Science, 300, no. 5618, 464–467, 2003.
  • 8. S. Kuramoto, T. Furuta, J. Hwang, K. Nishino, T. Saito, Elastic properties of Gum Metal, Mater. Sci. Eng. A, 442, no. 1–2, 454–457, 2006.
  • 9. R. Bustamante, K.R. Rajagopal, Solutions of some boundary value problems for a new class of elastic bodies undergoing small strains. Comparison with the predictions of the classical theory of linearized elasticity: Part I. Problems with cylindrical symmetry, Acta Mech., 226, no. 6, 1815–1838, 2015.
  • 10. S. Timoshenko, J.N. Goodier, Theory of Elasticity, 2nd ed., McGraw-Hill Book Company, Inc., New York, Toronto, London, 1951.
  • 11. S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability, 2nd ed., Dover, 2009.
  • 12. A.R. Srinivasa, On a class of Gibbs potential-based nonlinear elastic models with small strains, Acta Mech., 226, no. 2, 571–583, 2015.
  • 13. S.M. Han, H. Benaroya, T. Wei, Dynamics of transversely vibrating beams using four engineering theories, J. Sound Vib., 225, no. 5, 935–988, 1999.
  • 14. L.N. Trefethen, Spectral methods in MATLAB, Software, Environments, and Tools, 10, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2000.
  • 15. J.A. Weideman, S.C. Reddy, A MATLAB differentiation matrix suite, ACM Trans. Math. Softw., 26, no. 4, 465–519, 2000.
  • 16. W.M. Gentleman, Implementing Clenshaw–Curtis quadrature, I Methodology and experience, Commun. ACM, 15, 337–342, May 1972.
  • 17. W.M. Gentleman, Implementing Clenshaw–Curtis quadrature, II Computing the cosine transformation, Commun. ACM, 15, 343–346, May 1972.
  • 18. G. von Winckel, Fast Clenshaw–Curtis Quadrature, MATLAB Central File Exchange, February 2005, http://www.mathworks.com/matlabcentral/fileexchange/6911-fast-clenshaw-curtis-quadrature.
  • 19. J. Waldvogel, Fast construction of the Fejér and Clenshaw–Curtis quadrature rules, BIT Numerical Mathematics, 46, no. 1, 195–202, 2006.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72555a8a-4d30-4ac9-9977-9f054dc22bff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.