PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The content of heavy metal ions in ash from waste incinerated in domestic furnaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of preliminary tests obtained from the analysis of ash coming from the combustion of various types of waste in household furnaces. The aim of this work was to examine the influence of various types of waste burned in household furnaces on the elemental composition of the generated ash. As part of the research, analyses of ash generated from the incineration of mixed waste, plastics, wood, textiles, rubber waste and paper were made. The content of selected metal ions: Mn, Cu, Mo, Zn, Cd, Tl, Cr, Co, Ni, As, Sn, Sb, Pb, V was determined in the tested samples, according to PN-EN ISO 17294-2: 2016-11 standard. The highest concentrations of zinc were found in the large-sized waste, rubber and textile ash samples and highest concentrations of copper were found in the plastic and paper ash samples. The highest concentrations for elements such as copper, lead, cobalt and chromium were recorded for samples of rubber and large-sized waste containing e.g. varnished furniture boards. The obtained results showed that depending on the waste incinerated, the content of selected metals was significantly different, and the highest concentrations were noted for samples of large-sized waste, waste from segregated plastics and waste from rubbers.
Słowa kluczowe
Rocznik
Strony
68--73
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
  • Łukasiewicz Research Network–Institute of Ceramics and Building Materials, Opole, Poland
Bibliografia
  • 1. Choi M.J., Kim Y.J., Kim H.J. & Lee J.J. (2019). Performance evaluation of the use of tire-derived fuel fly ash as mineral filler in hot mix asphalt concrete, Journal of traffic and transportation Engineering (English edition), available on line 2.II.2019, (https://www.sciencedirect.com/science/article/pii/S2095756418300576 (11.2019)).
  • 2. Cieślik E., Konieczny T. & Bobik B. (2018). Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste, E3S Web of Conferences 28, 01008, Air Protection in Theory and Practice, (https://doi.org/10.1051/e3sconf/20182801008 (11.2019)).
  • 3. Czop M., Czoch D., Korol A. & Maduzia A. (2016). Tests of phytotoxicity of ashes from low-rise buildings on selected group of plants, Archives of Waste Management and Environmental Protection, ISSN 1733-4381, 18, 3, pp. 9-20.
  • 4. Czop M. & Kajda-Szczesniak M. (2010). Content of heavy metals in ashes after burning biomass briquette, Archives of Waste Management and Environmental Protection, 12, 1, pp. 67-76.
  • 5. Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of waste.
  • 6. Fuller A., Stegmaier M., Schulz N., Menke M., Schellhorn H., Knödler F., Maier J. & Scheffknecht G. (2018). Use of wood dust fly ash from an industrial pulverized fuel facility for rendering, Construction and Building Materials, 189, pp. 825-848.
  • 7. Kajda-Szcześniak M. (2014), Characteristics of ashes from fireplace, Archives of Waste Management and Environmental Protection, 16, 3, pp. 73-78.
  • 8. NovaisR. M., Carvalheiras J., Senff L. & Labrincha J.A. (2018). Upcycling unexplored dregs and biomass fly ash from the paper and pulp industry in the production of eco-friendly geopolymer mortars: A preliminary assessment, Construction and Building Materials, 184, pp. 464-472.
  • 9. Pöykiö R., Mäkelä M., Watkins G., Nurmesniemi H. & Dahl O (2016). Heavy metals leaching in bottom ash and fly ash fractions from industrial-scale BFB-boiler for environmental risks assessment, Transactions of Nonferrous Metals Society of China, 26(1), pp. 256-264.
  • 10. Rissanen J., Ohenoja K., Kinnunen P., Romagnoli M. & Illikainen M. (2018). Milling of peat-wood fly ash: Effect on water demand of mortar and rheology of cement paste, Construction and Building Materials, 180, pp. 143-153.
  • 11. Shakya P.R., Shrestha P., Tamrakar C.S. & Bhattarai P.K. (2006). Studies and Determination of Heavy Metals in Waste Tyres and their Impacts on the Environment, Pakistan Journal of Analytical & Environmental Chemistry, 7, 2, pp. 70-76.
  • 12. Sobolewski A., Topolnicka T., Mastalerz M., Matuszek K., Sajdak M., Wilk B., Mazurek I., Kwiatkowski B, Jakubowski M. & Ukowska M. (2019). Poradnik przeprowadzania kontroli palenisk domowych, Wykrywanie nielegalnego spalania odpadów i kontrola przestrzegania przepisów uchwały antysmogowej, Kraków 2019, (https://blog.frankbold.pl/portfolio/poradnikkontroli-palenisk/ (11.2019)).
  • 13. Smołka-Danielowska D., Kądziołka-Gaweł M. & Krzykawski T. (2019). Chemical and mineral composition of furnace slags produced in the combustion process of hard coal, International Journal of Environmental Science and Technology, 16, 10, pp. 5387-5396.
  • 14. Wang P., Hu Y. & Cheng H. (2019). Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China, Environmental Pollution, 252, pp. 461-475.
  • 15. Wasielewski R. & Radko T. (2018). Problem zagospodarowania odpadów z palenisk domowych, Ecological Engineering, 19, 3, pp. 36-44, (https://doi.org/10.12912/23920629/91024 (11.2019)).
  • 16. Waste Management Act of 14 December 2012 (Dz.U. 2013 poz. 21).
  • 17. Zając A. (2016), Popiół z kotła a (nie)ekologiczne spalanie, (https://www.instalator.pl/2016/02/popiol-z-kotla-a-nieekologicznespalanie/ (11.2019)).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7251dcba-7ece-421e-a971-b2736ef2242f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.