PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical investigation of pores statistic distribution influence on porous material mechanical behaviour

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work presented in the paper was to investigate the influence of pores statistic distribution used for porous material idealistic microstructure model generation on modelled material mechanical properties. Three distribution models were used: homogenous, normal and Weibull one. The model idea was based on the observation of SEM visualisation of shale rock structure which is characterized with dual porosity. The proposed models will be useful for mechanical behaviour of such structures prediction.
Rocznik
Strony
89--95
Opis fizyczny
Bibliogr. 11 poz., rys., tab., wykr.
Twórcy
  • Military University of Technology them. Jaroslaw Dabrowski Gen. S. Kaliski St. 2, 00-908 Warsaw, Poland
Bibliografia
  • 1. Kalantari-Dahaghi A., Numerical simulation and modeling of enhanced gas recovery and CO2 sequestration in shale gas reservoirs: A feasibility study, Proceedings of SPE International Conference on CO2 Capture, Storage, and Utilization, 10–12 November, New Orleans, Louisiana, USA, West Virginia University, pp. 122–134, 2010, doi: 10.2118/139701-MS.
  • 2. Freire-Gormaly M., Ellis J.S., Bazylak A., MacLean H.L., Comparing thresholding techniques for quantifying the dual porosity of Indiana Limestone and Pink Dolomite, Microporous and Mesoporous Materials, 207: 84–89, 2015, doi: 10.1016/j.micromeso.2015.01.002.
  • 3. Futaba D.N. et al., Dual porosity single-walled carbon nanotube material, Nano Letters, 9(9): 3302–3307, 2009, doi: 10.1021/nl901581t.
  • 4. Williams S.K. et al., Dual porosity expanded polytetrafluoroethylene for soft-tissue augmentation, Plastic & Reconstructive Surgery, 115(7): 1995–2006, 2005, doi: 10.1097/01.PRS.0000163324.17001.E3.
  • 5. Electron microscopy of shale hydrocarbon reservoirs, Camp W.K., Diaz E., Wawak B. [Eds.], AAPG Memoir vol. 102, American Association of Petroleum Geologists, 2013, doi: 10.1306/M1021339.
  • 6. Scheffler M., Colombo P., Cellular ceramics: structure, manufacturing, properties and applications, Wiley-VCH Verl, Weinheim 2005.
  • 7. Haws W.P., Rao S.C., Simunek J., Poye I.C., Single-porosity and dual-porosity modeling of water flow and solute transport in subsurface-drained fields using effective field-scale parameters, Journal of Hydrology, 313(3–4): 257–273, 2005, doi: 10.1016/j.jhydrol.2005.03.035.
  • 8. Uleberg K., Kleppe J., Dual porosity, dual permeability formulation for fractured reservoir simulation, TPG4150 Reservoir Recovery Techniques 2003.
  • 9. Bloomfield J.P., Barker J.A., Robinson N., Modeling fracture porosity development using simple growth laws, Ground Water, 43(3): 314–326, 2005, doi: 10.1111/j.1745- 6584.2005.0039.x.
  • 10. Chitez A.S., Jefferson A.D., Porosity development in a thermo-hygral finite element model for cementitious materials, Cement and Concrete Research, 78(B): 216–233, 2015, 10.1016/j.cemconres.2015.07.010.
  • 11. Shoshany Y., Prialnik D., Podolak M., Monte Carlo modeling of the thermal conductivity of porous cometary ice, Icarus, 157(1): 219–225, 2002, doi: 10.1006/icar.2002.6815.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-724ed6eb-0f98-41a1-a9d8-f10c67ce3ee8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.