PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Fractional model of the electrochemical capacitor relaxation phenomenon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fractional model of the electrochemical capacitor (EC) relaxation phenomenon is presented herein. The EC relaxation phenomenon occurs when EC impedance measurements are performed after charge or discharge current interruption during potential relaxation. The EC fractional model is obtained based on the fractional order transfer function, obtained in turn by means of fitting the EC impedance data. The inverse Laplace transform is used to obtain the EC impulse response. Meanwhile, the EC charge and discharge simulations are performed using the EC impulse response.
Rocznik
Strony
441--448
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
autor
  • Khmelnitsky National University, Instytutska, 11, 29016, Khmelnytskyi, Ukraine
  • UNINOVA and Faculty of Sciences and Technology of Universidade Nova de Lisboa, Campus da FCT da UNL, Quinta da Torre, 2825-149 Caparica, Portugal
autor
  • Khmelnitsky National University, Instytutska, 11, 29016, Khmelnytskyi, Ukraine
autor
  • Khmelnitsky National University, Instytutska, 11, 29016, Khmelnytskyi, Ukraine
Bibliografia
  • [1] V.S. Bagotsky, A.M. Skundin, and Yu.M. Volovich, Electrochemical Power Sources. Batteries, Fuel Cells, and Supercapacitors, The Electrochemical Society Series, Wiley, 2015.
  • [2] N. Kularatna, Energy Storage Devices for Electronic Systems. Rechargeable Batteries and Supercapacitors, Elsevier, 2015.
  • [3] M.-C. Pera, D. Hissel, H. Gualous, and Ch. Turpin, Electrochemical Components, John Wiley & Sons, Aug 2, 2013 – Technology & Engineering – 336 pages.
  • [4] B.E. Conway, Electrochemical supercapacitors: Scientific Principles and Technological Application, Plenum, New York, NY, 1999.
  • [5] S. Westerlung and L. Ekstam, “Capacitor Theory”, IEEE Transactions on Dielectrics and Electrical Insulation 1(5), 826–839 (1994).
  • [6] B.E. Conway and W.G. Pell, “Double-layer and pseudocapaci-tance types of electrochemical capacitors and their applications to the development of hybrid devices”, Journal of solid State Electrochemical, 7, 637–644 (2003).
  • [7] G. Tsirimokou, C. Psychalinos, and A. Elwakil, Design of CMOS Analog Integrated Fractional-Order Circuits: Applications in Medicine and Biology, Springer, Apr 12, 2017 – Tech-nology & Engineering – 114 pages.
  • [8] K.I. Ozoemena and S. Chen, Nanomaterials in Advanced Batteries and Supercapacitors, Springer, 2016.
  • [9] Q. Ke and J. Wang, “Graphene-based materials for superca-pacitor electrodes a review”, J. Mater. 2, 37–54 (2016).
  • [10] X. Wang, D. Kong, Y. Zhang, B. Wang, X. Li, T. Qiu, Q. Song, J. Ning, Y. Song, and L. Zhi, “All-biomaterial super-capacitor derived from bacterial cellulose”, Nanoscale 8(17), 9146 (2016).
  • [11] M. Ogorzalek, Fractal Structures for Electronics Applications, IEEE Circuits and Systems Society Workshop, 2007.
  • [12] S. Fletcher, V.J. Black, and I. Kirkpatrick, “A universal equivalent circuit for carbon-based supercapacitors”, Journal of Solid State Electrochemistry 18(5), 1377–1387 (2014).
  • [13] E. Barsoukov and J.R. Macdonald, Impedance Spectroscopy. Theory, Experiment, and Applications, 2-nd edition, Wiley-Interscience, John Wiley & Sons, Inc, Hoboken, New Jersey, 2005. ISBN 0-471-64749-7.
  • [14] D. Vladikova, The technique of the differential impedance analysis part I: Basics of the impedance spectroscopy, In Proceedings of the International Workshop on Advanced Techniques for Energy Sources Investigation and Testing, pages 1–28, 2004.
  • [15] F.F. Kuo, Network Analysis and Synthesis, Wiley International, 5-th Edition, 2012.
  • [16] R. de Levie, “Electrochim”, Acta 8, 751 (1963).
  • [17] M. Itagaki, Y. Hatada, I. Shitanda, K. Watanabe, “Complex impedance spectra of porous electrode with fractal structure”, Electrochimica Acta 55, 6255–6262 (2010).
  • [18] A.D. Poularikas. The Handbook of Formulas and Tables for Signal Processing, CRC Press, 1999.
  • [19] M. Ortigueira, Fractional calculus for scientists and engineers, Springer, Berlin, 2011.
  • [20] M. Ortigueira and J. Machado, “Which Derivative?”, Fractal and Fractional 1(1), 3 (2017).
  • [21] D. Ravaine and J.-L. Souquet, “Application du Trace des Diagrammes D’Impedance Complexe de la Determination de la Conductivit´e Electrique des Verres Silice-Oxyde Alcalin”, Compt. Rend. Acad. Sci. (Paris) 277C, 489–492 (1973).
  • [22] G.W. Walter, “A review of impedance methods used for corrosion performance analysis of painted metals”, Corros. Sci. 26(9), 681–703 (1986).
  • [23] V.S. Muralidharan, “Warburg impedance – basics revisited”, Anti-Corrosion Methods and Materials 44(1), 26–29 (1997).
  • [24] R.R. Nigmatullin and S.I. Osokin, “Signal processing and recognition of true kinetic equations containing non-integer derivatives from raw dielectric data”, Signal Processing 83(11), 2433–2453 (2003).
  • [25] J.J. Quintana, A. Ramos, and I. Nuez, Identification of the fractional impedance of ultracapacitors, In IFAC Workshop FDA. IFAC, 2006. ISBN 972-8688-42-3.
  • [26] V. Martynyuk and M. Ortigueira, “Fractional model of an electrochemical capacitor”, Signal Processing 107, 355–360 (2015).
  • [27] T. Freeborn, B. Maundy, and A. Elwakil, Fractional-order models of supercapacitors, batteries and fuel cells: a survey, Materials for Renewable and Sustainable Energy, 2015.
  • [28] T.J. Freeborn, B. Maundy, and A.S. Elwakil, “Measurement of supercapacitor fractional-order model parameters from voltage-excited step response”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems 3(3), 416–424 (2013).
  • [29] C.A. Monje, Yang Quan Chen, B.M. Vinagre, Dingyu Xue, and V. Feliu, Fractional-order Systems and Controls. Fundamentals and Applications, Springer-Verlag, 2010.
  • [30] M. Lewandowski and M. Orzyłowski, “Fractional-order models: The case study of the supercapacitor capacitance measurement”, Bull. Pol. Ac.: Tech. 65(4), 449–457 (2017).
  • [31] J.J. Quintana, A. Ramos, and I. Nuez, Modeling of an EDLC with fractional transfer functions using Mittag-Leffler equations, Math. Probl. Eng., Article ID 807034, 7 pp., 2013.
  • [32] V. De Santis, V. Martynyuk, A. Lampasi, M. Fedula, and M.D. Ortigueira, “Fractional-order circuit models of the human body impedance for compliance tests against contact currents”, International Journal of Electronics and Communications (AEU) 78, 238–244 (2017).
  • [33] R. Gorenflo, A. Kilbas, F. Mainardi, and S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications: Theory and Applications, Springer-Verlag Berlin Heidelberg, 2014.
  • [34] T. Kaczorek, “Relationship between the observability of standard and fractional linear systems”, Archives of Control Sciences 27(LXIII)(3), 441–451 (2017).
  • [35] A. Jakubowska and J. Walczak, Analysis of the Transient State in a Circuit with Supercapacitor, Poznan University of Technology Academic Journals: Electrical Engineering, No 81, 2015.
  • [36] M. Fouda, A.S. Elwakil, A.G. Radwan, and A. Allagui, “Power and energy analysis of fractional-order electrical energy storage devices”, Energy 111, 785–792 (2016).
  • [37] K. Darowicki, J. Orlikowski, and G. Lentka, “Instantaneous impedance spectra of a non-stationary model electrical system”, Journal of Electroanalytical Chemistry 486(2), 106–110 (2000).
  • [38] K. Darowicki, K. Andrearczyk, P. Slepski, A. Sierczynska, G. Lota, K. Fic, and K. Lota, “Determination of pseudocapacitance changes of nickel oxide NiO electrode with the use of dynamic electrochemical impedance spectroscopy”, International Journal of Electrochemical Science 9, 1702–1714 (2014).
  • [39] V. Gafiychuk and B. Datsko, “Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems”, Computers & Mathematics with Applications 59(3), 1101–1107 (2010).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-724c7798-e546-4887-9edb-4192cf0e4d23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.