
137

EQUIVALENCE IN JAVA AND CLOJURE, DESIGN AND

IMPLEMENTATION CONSIDERATIONS

Konrad Grzanek

IT Institute, University of Social Sciences
9 Sienkiewicza St., 90-113 Łódź, Poland
kgrzanek@spoleczna.pl, kongra@gmail.com

Abstract

Immutability and the functional programming style demand an extensible and
generic approach in the domain of semantic and structural equivalence testing.
The lack of a library or a framework offering such functionality for Clojure
programming language led to some design and implementation efforts that this
article undertakes to describe. Incidentally it tries to gather and present a
collection of most severe mistakes that may be made by a programmer that
attempts to test objects of various kinds for their equivalence, both in Clojure
and the underlying Java run-time with it's standard library, showing simple yet
usable ways to avoid them.

Key words: Equivalence testing, semantics, identity, functional programming,
Clojure

1 Introduction

Growing multitasking programming needs and the popularity of functional
programming style brought the notions of immutability and state to the fore-
front of elements a software engineer must think of when designing and im-
plementing modern software systems. Immutable objects that are commonly
associated with mathematical models of the real world make the structural
equality a default choice, in the opposition to the explicitly expressed equali-
ty, based on an explicit identifier, physical memory location etc., that must be
used under an assumption of the always present change. Additionally and in a
resulting way, duck typing (see e. g. [1]) is a programming means of abstrac-
tion of a growing importance at least in some kinds of systems. This goes in
an analogous ways in an opposition to the tag-based typing. Unfortunately,
the state of the art in programming languages, even the most advanced ones is
not an optimal one when talking about the objects' identity and structural
equivalence. The paper gives an overview of these problems and tries to

Equivalence In Java And Clojure...

138

present a generalized solution based on some solid abstractions. Then the
important implementation details of an identity framework for Clojure is pre-
sented.

2 Reference Types Equivalence Problems

If we assume a concentration on the structural equivalence issues, then the
lack of a generalized and extensible solution to the problem of both in Java
and Clojure is apparent. These two languages are mentioned here for the fol-
lowing four reasons:
1. Java is a typical, strongly and statically typed programming language [2],

very representative for a class of languages used widely nowadays and
known as the object-oriented ones. The default identity is the memory lo-
cation-based one.

2. There are multiple reasons why implementing a non-default identity crite-
ria by overriding the java.lang.Object equals and hashCode methods is
hard and error-prone [3, 4]. Taking a detailed look at these mechanisms
and problems laying there is beyond the scope of this article, but will be
presented elsewhere in the future works.

3. Clojure is a modern functional language [5, 6], supporting immutability
and using Software Transactional Memory where the explicit state must
be used to achieve a desired functionality. Clojure is strongly typed but in
an opposition to Java it lacks static type-checking and uses duck-typing
where possible.

4. The two languages both run on top of the JVM, Clojure shares Java libra-
ries and is capable to run an arbitrary Java code, on the other hand embed-
ding Clojure run-time in a Java application is an easy task. One can say
these languages are related worlds despite the fundamental stylish and typ-
ing differences between them.

Clojure standard library as well as some run-time elements support struc-
tural equivalence with respect to collections, in particular. Sequences (vectors,
lists), sets and associative collections (maps, records) all exhibit support for
deep, structural comparison. Unfortunately, this support is not extensible. Yes,
a presence of some interfaces suggests that the mechanisms are capable of
being extended, but:
- There are some implementation details that effectively block extending

the run-time abstractions with custom classes, written either in Clojure
(records, types) or Java (classes). An example of this is introducing a new

Grzanek. K.

139

composite numeric type, like a Complex number1. The new non-atomic
numeric type does not fit into Clojure equivalence mechanisms for num-
bers and there is no way to solve this problem without making significant
changes to the core of the language.

- The situation gets disclosed when trying to integrate an existing any
computational library into the Clojure based system.

- Even if there were no barriers described above, using the default inter-
face-based abstractions is impossible on already written types (Java
classes in particular). Using AOP as described by Kiczales [7] is not an
elegant nor easily accessible solution here.

All these problems are easily solvable with use of Clojure protocols [6],
but currently there are no libraries of this kind. This is a very important pre-
mise that influenced creating a universal solution described in this article.

3 Equivalence of Numeric Values � Quirks and Corner Cases

Problems described in the previous section expand onto the primitive
types, their values as well as their boxed counterparts. To focus our considera-
tions, the general contract for equality and hashing must be provided to the
reader. Java Language Specification [2] as well as some other resources [8]
say that equals method implements an equivalence relation. It is:
- Reflexive: For any non-null reference value x, x.equals(x) must return true.
- Symmetric: For any non-null reference values x and y, x.equals(y) must

return true if and only if y.equals(x) returns true.
- Transitive: For any non-null reference values x, y, z, if x.equals(y) returns

true and y.equals(z) returns true, then x.equals(z) must return true.
- Consistent: For any non-null reference values x and y, multiple invocations

of x.equals(y) consistently return true or consistently return false, provided
no information used in equals comparisons on the objects is modified.

- For any non-null reference value x, x.equals(null) must return false.

For the hashCode method, the following set of constraints applies:
- Whenever it is invoked on the same object more than once during an ex-

ecution of an application, the hashCode method must consistently return
the same integer, provided no information used in equals comparisons on
the object is modified. This integer need not remain consistent from one
execution of an application to another execution of the same application.

1 Complex numbers are not present in Clojure by default. ANSI Common Lisp ([9]) supports

them.

Equivalence In Java And Clojure...

140

- If two objects are equal according to the equals(Object) method, then call-
ing the hashCode method on each of the two objects must produce the
same integer result.

- It is not required that if two objects are unequal according to the
equals(Object) method, then calling the hashCode method on each of the
two objects must produce distinct integer results. However, the program-
mer should be aware that producing distinct integer results for unequal ob-
jects may improve the performance of hash tables.

Neither the Java primitives2 nor the derivatives of java.lang.Number pos-
sess the semantically correct implementations of equivalence mechanisms as a
whole. Saying �semantically correct� we mean a correct behavior of the prop-
er methods and operators with respect to Liskov substitution principle [10].
Moreover, using some values of these types lead to surprising results, espe-
cially the floating-point values representation in Java3 causes real headaches
when attempting to implement solid numeric codes.

The rest of this section is an attempt to present a catalog of semantically
incorrect behaviors of numeric values. All examples are given in Clojure, and
so we focus on boxed types rather than the primitive ones. We also use clo-
jure.core/= and clojure.core/hash-code operators instead of calling equals
and hashCode explicitly4.

There are the most important examples of malfunctioning equivalence in
Clojure and Java:
- Erroneous floats equivalence, both in primitive type values and in the

boxed ones. Example:

> (= (float 1.234) 1.234)
false

> (hash 1.234)
-146307282

> (hash (float 1.234))
1067316150

This turns out to be eventually a conversion problem between floats and
doubles, because when applying clojure.core/= operator the Clojure run-time

2 In the case of primitives we mean the == operator in Java, not the equals/hashCode com-

plementary set of methods that apply only for reference types.
3 And all languages with standard IEEE 754 ([11]) floating-point representation.
4 The reader familiar with Clojure should be aware that these operators semantically wrap

equals and hashCode.

Grzanek. K.

141

performs the auto-promotion of float (java.lang.Float) value into double (ja-
va.lang.Double). The same happens while executing clojure.core/hash.

- Semantically incorrect java.math.BigDecimal behavior:

> (= 1.234M 1.2340M)
false

> (hash 1.234M)
38257

> (hash 1.2340M)
382544

In the mathematical sense the two literals 1.234M and 1.2340M denote the
same java.math.BigDecimal value. Unfortunately, the representations of the
two values differ in scale (see java.math.BigDecimal source code, e g. 12]),
and as a result the desired equivalence is not reached.

- Erroneous float/double and java.math.BigDecimal equivalence behavior:

> (= 1.234 1.234M)
false

> (= (float 1.234) 1.234M)
false

> (hash 1.234M)
38257

> (hash 1.234)
-146307282

> (hash (float 1.234))
1067316150

Here we also have a conversion-related problem. Creating a BigDecimal
value out of a double one may lead to the following observation:

> (java.math.BigDecimal. 1.234)
1.2339999999999999857891452847979962825775146484375M

This is hardly an expected result both for a novice and an experienced pro-
grammer, unless he does have strong mathematical background in the part of

Equivalence In Java And Clojure...

142

numerical analysis that refers to floating-point representations, or at least is
familiar with in this particular Java implementation behaviors.

- java.math.BigInteger / clojure.lang.BigInt and java.math.BigDecimal
equivalence relation incompatibility for mathematical integrals:

> (= 1N 1M)
false

> (hash 1N)
1

> (hash 1M)
31

where

> (class 1N)
clojure.lang.BigInt

and

> (class 1M)
java.math.BigDecimal

- Non-equivalence of clojure.lang.Ratio [6] and Java floating-point values:

> (= 1/4 0.25)
false

> (hash 1/4)
5

> (hash 0.25)
1070596096

where

> (class 1/4)
clojure.lang.Ratio

and

> (class 0.25)
java.lang.Double

Grzanek. K.

143

- Lack of equivalence between clojure.lang.Ratio and ja-
va.math.BigDecimal values:

> (= 1/4 0.25M)
false

> (hash 1/4)
5

> (hash 0.25M)
777

There are even more problems in the numerical analysis domain that have
their source in inconsistent representations, e. g. testing for the equality of two
floating-point numbers. For more information about Java's specific numerical
quirks one can look into [13].

The author's intent was to create an extensible library with a set of seman-
tic and structural equivalence semantics for Clojure programming language.
The library would be a solution to all the mentioned problems and malfunc-
tioning representations both in primitive numeric types with their boxed coun-
terparts and in other reference type values. The rest of presents the design
implementation of the most important elements of the library.

4 Common Semantic and Structural Comparison Abstraction

Acceding to the task of designing and implementing the library one of the
key decisions to make was choosing the right way of covering a set of existing
types with the new abstraction. A non-functional requirement was to stay
close to the performance5 of the original clojure.core/= and clojure.core/hash
operators with the newly implemented versions. This the most important rea-
son why the decision was made to use Clojure protocols over class-dispatched
multimethods, although the former would be more flexible and elegant � test-
ing for equivalence requires in fact multi-class dispatch (on two classes in the
case of the binary operators).

Deep, semantic and structural equivalence is described by the following
protocol:

(defprotocol WithDeep=
 (binary-deep= [this other])

5 Regarding the cost of sole procedure call. Due to the semantic richness of the newly de-

signed mechanisms expanding the requirement onto the total performance of the calls
would be unrealistic.

Equivalence In Java And Clojure...

144

 (binary-deep=Long [this other])
 (binary-deep=BigInteger [this other])
 (binary-deep=BigInt [this other])

 (binary-deep=Double [this other])
 (binary-deep=BigDecimal [this other])
 (binary-deep=Ratio [this other])

 (binary-deep=List [this other])
 (binary-deep=ISeq [this other])

 (binary-deep=String [this other])
 (binary-deep=Symbol [this other])
 (binary-deep=Keyword [this other])

 (binary-deep=nil [this]))

Other types, the java.lang.Number derivatives in particular, may be re-
duced to the forms described by the methods of this protocol.

The protocol echoes the Visitor design pattern (as described in [14]), that
is a common technique for implementing binary dispatch in programming
languages where the feature is not present.

Additionally we have a pair of operators that introduce the variadic arity to
the library. The implementation of the operators closely mimics the original
clojure.core/= and clojure.core/not= procedures:

(defn deep=
 ([x] true)
 ([x y] (binary-deep= x y))
 ([x y & more]
 (if (binary-deep= x y)
 (if (next more)
 (recur y (first more) (next more))
 (binary-deep= y (first more)))
 false)))
(defn deep-not=
 ([x] false)
 ([x y] (not (deep= x y)))
 ([x y & more]
 (not (apply deep= x y more))))

Every user of the library is strongly encouraged to use deep= and deep-
not= instead of their binary �colleagues� - the former should be treated only
as the slots for injecting new equivalence semantics (when extending the
WithDeep= protocol).

Grzanek. K.

145

5 Common Semantic and Structural Hash Code Abstraction

The semantic and structural hash code abstraction is defined as the follow-
ing simple protocol:

(defprotocol WithDeepHash
 (^Integer deep-hash [this]))

6 Selected Implementation Details for Numeric Types

Solving the equivalence issues described in section 3 of this paper was
based on the design principle of making an optional promotion (either an up-
grade, downgrade or �horizontal�) either on the semantic level (algorithmi-
cally) or �physically� (by conversion) of the arguments of deep= or deep-
hash according to the following rules (illustrated with the source codes be-
low):
- All Java primitive integrals participating in the sub-typing relation accord-

ing to the formula byte <: short <: int <: long6 and their boxed counterparts
Byte, Short, Character, Integer, Long are always promoted to long / Long7.
Then the promoted value is used to compute the hash code for primitive
long8:

(extend-protocol WithDeepHash
 java.lang.Byte
 (deep-hash [this] (Longs/hashCode (.longValue this)))

 java.lang.Short
 (deep-hash [this] (Longs/hashCode (.longValue this)))

 java.lang.Character
 (deep-hash [this] (Longs/hashCode (chlong9 this)))

 java.lang.Integer
 (deep-hash [this] (Longs/hashCode (.longValue this)))

 java.lang.Long
 (deep-hash [this] (Longs/hashCode (.longValue this))))

6 Including char despite it's own sub-typing path: char <: int <: long
7 Actually, the promotion always takes place on the boxed values, due to the object-oriented

nature of Clojure protocols. This applies to all mechanisms described in this and the re-
maining sections.

8 Using utility class com.google.common.primitives.Longs from the Guava [15] library
9 java.lang.Character is not a Number derivative, so it must be converted into a long before-

hand with: (defn chlong [^Character c] (long (int (.charValue c))))

Equivalence In Java And Clojure...

146

- Values of java.math.BigInteger and clojure.lang.BigInt are treated as Long
values (being semantically downgraded) iff they fit into the long integral
range. Otherwise their native hashCode implementations are used:

(defn BigInteger-in-long?
 [^java.math.BigInteger n]
 (< (long (.bitLength n)) 64))

(extend-protocol WithDeepHash
 java.math.BigInteger
 (deep-hash [this]
 (if (BigInteger-in-long? this)
 (Longs/hashCode (.longValue this))

 (.hashCode this)))

 clojure.lang.BigInt
 (deep-hash [this]

 (if-let [bipart (.bipart10 this)]
 (.hashCode bipart)

 (Longs/hashCode (.lpart10 this)))))

- Instances of java.math.BigDecimal get converted into ja-
va.math.BigInteger iff they represent an integral value (this may be called
a �horizontal� conversion, neither upgrade nor downgrade), or are used as
themselves only with stripping trailing zeros to eliminate the scaling in-
compatibilities:

(defn- BigDecimal-deep-hash
 [^BigDecimal d]
 (if (BD/integer?11 d)
 (deep-hash (.toBigInteger d))

 (.. d stripTrailingZeros hashCode)))

(extend-protocol WithDeepHash
 java.math.BigDecimal
 (deep-hash [this] (BigDecimal-deep-hash this)))

10 See [6].
11 The functionality is implemented as a separate custom library whose full description goes

beyond the scope of this article, however some of it's details will be presented further in the
section. To be required like: (require 'kongra.bidec :as BD).

Grzanek. K.

147

- Floating-point values are checked against their infinity and NaN (not a
number) equivalence. If they are infinite or NaN the typical conversion to
long value is used. Otherwise if they are semantically mathematical integ-
ers, they undergo downgrade to long value. Finally if neither applies, the
Double gets promoted to a java.math.BigDecimal value:

(defn- Double-deep-hash
 [^Number this]
 (let [d (.doubleValue this)]
 (if (or (Double/isNaN d) (Double/isInfinite d))
 (Longs/hashCode (Double/doubleToLongBits d))

 (if (DoubleMath12/isMathematicalInteger d)
 (Longs/hashCode (.longValue this))

 (.hashCode (BigDecimal/valueOf13 d))))))

(extend-protocol WithDeepHash
 java.lang.Float
 (deep-hash [this] (Double-deep-hash (fldouble this)))

 java.lang.Double
 (deep-hash [this] (Double-deep-hash this)))

For Floats a correct conversion into Double values requires an interme-
diate String to take part in the process, in a similar way it was when promot-
ing the Double into a BigDecimal:

(defn ^Double fldouble
 [^Number f]
 (Double/valueOf (Float/toString (.floatValue f))))

- Finally, the rational numbers, instances of clojure.lang.Ratio undergo a
slightly more advanced numerical study to verify whether or not it is poss-
ible to convert them into a java.math.BigDecimal instances. They are con-
vertible iff they are not recurring decimals, i. e. the prime factorization of
their denominators contains only the numbers 2 and 5, possibly repeating
multiple times. When a Ratio is not convertible, it's default hashCode val-
ue is taken as the result:

12 Using utility class com.google.common.math.DoubleMath from the Guava library.
13 Promoting a Double into a java.math.BigDecimal requires an intermediate String to take

par t in the process. This is the only correct to do this due to the nature of the primitive
floating-point representation (sic!). This is an operation of a significant performance cost
that must be incurred in the name of the correctness.

Equivalence In Java And Clojure...

148

(defn non-repeating-denominator?
 [n]
 (cond (or (= 1 n) (= -1 n)) true
 (even? n) (recur (/ n 2))
 (= 0 (mod n 5)) (recur (/ n 5))
 :else false))

(extend-protocol WithDeepHash
 clojure.lang.Ratio
 (deep-hash [this]
 (let [denom (.denominator this)]
 (if (non-repeating-denominator? denom)
 (let [num (BigDecimal. (.numerator this))
 denom (BigDecimal. denom)]

 (BigDecimal-deep-hash (.divide num denom)))
 (.hashCode this)))))

The above rules and their realizations in the presented source code referred
all to the deep-hash procedure. But the same or similar principles influenced
the binary (and so the general) deep= implementation.

- All primitive integrals and their boxed versions are compared with one
another after a promotion to a Long type:

(defn Long=Long
 [^Number this ^Number other]
 (= (.longValue this) (.longValue other)))

For every type either numeric or not the binary equivalence protocol is ex-
tended in a way like below for the Byte class:

(extend-protocol WithDeep=
 java.lang.Byte

 (binary-deep= [this other] (binary-deep=Long other this))

 (binary-deep=Long [this other] (Long=Long other this))
 (binary-deep=BigInteger [this other] (BigInteger=Long other this))
 (binary-deep=BigInt [this other] (BigInt=Long other this))

 (binary-deep=Double [this other] (Double=Long other this))
 (binary-deep=BigDecimal [this other] (BD/= other this))
 (binary-deep=Ratio [this other] (binary-deep=Long other this))

 (binary-deep=List [this other] (binary-deep=Long other this))
 (binary-deep=ISeq [this other] (binary-deep=Long other this))

 (binary-deep=String [this other] (binary-deep=Long other this))
 (binary-deep=Symbol [this other] (binary-deep=Long other this))

Grzanek. K.

149

 (binary-deep=Keyword [this other] (binary-deep=Long other this))

 (binary-deep=nil [_] false))

In the listings above the underlined procedures Long=Long, binary-
deep=Long take part in the promotion and the actual comparison. The above
code is also a pattern for all other types.

- When testing for Long and Double values equivalence, the Double value is
checked for it's �integral� character. If it is a mathematical integer, it is
downgraded to Long and then tested for equality with the passed Long val-
ue. In any other case the Double can't be an equivalent for an integral val-
ue.

(defn Double=Long
 [^Number this ^Number other]
 (when (DoubleMath/isMathematicalInteger
 (.doubleValue this))
 (= (.longValue this) (.longValue other))))

- The correct way to test two Doubles for equality is using the technique
below.:

(defn Double=Double
 [^Number this ^Number other]
 (zero? (Double/compare (.doubleValue this)
 (.doubleValue other))))

It is an important issue, because many programmers use the ordinary ==
operator to test doubles for equality and the == does not work properly with-
Double.NaN.

- BigIntegers may be equivalent to Longs iff they fit in the 64-bit Long
range. On such occasion a BigDecimal gets algorithmically downgraded to
a Long before comparing:

;; BigInteger
(defn BigInteger=Long
 [^BigInteger this ^Number other]
 (when (BigInteger-in-long? this)
 (= (.longValue this) (.longValue other))))

- In the case of BigIntegers and Doubles the values of both types may be
equivalent only if the Double is a mathematical integer and the BigInteger
fits in the 64-bit long range. Then the values are downgraded to Longs and
tested for equality:

Equivalence In Java And Clojure...

150

(defn BigInteger=Double
 [^BigInteger this ^Number other]
 (when (and (DoubleMath/isMathematicalInteger
 (.doubleValue other))
 (BigInteger-in-long? this))
 (= (.longValue this) (.longValue other))))

- The instances of clojure.lang.BigInt undergo the same rules as ja-
va.math.BigInteger when tested for equality against Doubles and Longs.
The minor changes come out from some implementation differences be-
tween BigInts and BigIntegers. See the codes below:

(defn BigInt=Long
 [^BigInt this ^Number other]
 (when-not (.bipart this)
 (= (.lpart this) (.longValue other))))

(defn BigInt=Double
 [^BigInt this ^Number other]
 (when (and (DoubleMath/isMathematicalInteger
 (.doubleValue other))
 (not (.bipart this)))
 (= (.lpart this) (.longValue other))))

- The equivalence of Java BigIntegers and Clojure BigInts is one of the
easiest to be achieved because every BigInt may be converted into a BigIn-
teger easily with the API call:

(defn BigInt=BigInteger
 [^BigInt this ^BigInteger other]
 (.equals (.toBigInteger this) other))

- The binary equivalence algorithm for Clojure rational numbers uses a clo-
jure.core/rationalize API call to convert other numbers, namely BigDe-
cimals and Doubles to Ratio instances and then to perform the equality
test:

(binary-deep=Double [this other]
 (.equals this (rationalize other)))

(binary-deep=BigDecimal [this other]
 (.equals this (rationalize other)))

(binary-deep=Ratio [this other]
 (or (ref= this other) (.equals this other)))

Grzanek. K.

151

Last, but not least there are the selected implementation details of the kon-
gra.bigdec library, that is used as a tool in the equivalence realization.

Testing two instances of java.math.BigDecimal for equality requires using
the compareTo method, due to similar reasons that were mentioned when
describing deep-hash implementation for BigDecimals earlier in this section:

(defn =
 ([this] true)
 ([this other] (zero? (.compareTo (cast14 this)
 (cast14 other))))
 ([this other & more]
 (if (BD/= this other)
 (if (next more)
 (recur other (first more) (next more))
 (BD/= other (first more)))

 false)))

Testing java.math.BigDecimals for their integer equivalence uses the fol-
lowing procedure before verifying the actual value equality:

(defn integer?
 ([this ^Long signum]
 (let [this (cast14 this)]
 (or (zero? signum)
 (<= (long (.scale this)) 0)
 (<= (long (.. this
 stripTrailingZeros scale)) 0))))

 ([this]
 (let [this (cast14 this)]
 (BD/integer? this (long (.signum this))))))

7 Selected Implementation Details for Reference Types

The structural and semantic equivalence implementation for reference
types refers mostly the collections. For sequences the following Java proce-
dure is used as a utility mechanism to compute a the deep-hash value for a
sequence15. Please, note the deep-hash dependency passed as a procedure
parameter:

14 The kongra.bigdec/cast operator is used to convert values of various types into ja-

va.math.BigDecimal. It's protocol-based implementation is not presented in the paper.
15 A similar mechanism runs for the java.util.List instances. The only difference is the use of

iterator there.

Equivalence In Java And Clojure...

152

 public static int calculate(ISeq coll, IFn deepHash) {
 if (null == coll) {
 return 0;
 }
 ISeq seq = coll.seq();
 if (null == seq) {
 return 0;
 }
 int result = 1;
 do {
 Object element = seq.first();
 result = 31 * result + calculate(element,
 deepHash);
 seq = seq.next();
 }
 while (null != seq);
 return result;
 }

The above algorithm closely mimics similar algorithms belonging both to
the Java standard library16 as well as the Clojure language library and run-
time17.

Thus the implementation of deep-hash for objects sequential in nature:

(extend-protocol WithDeepHash
 java.util.List
 (deep-hash [this]
 (DeepHash/calculate this ^IFn deep-hash))

 clojure.lang.ISeq
 (deep-hash [this]
 (DeepHash/calculate this ^IFn deep-hash))

 kongra.core.Pair
 (deep-hash [this]
 (DeepHash/calculate this ^IFn deep-hash)))

Strings are also treated as sequences (of Characters, thus integrals):

(extend-protocol WithDeepHash
 java.lang.String
 ;; String is treated as a sequence of chars
 (deep-hash [this]
 (DeepHash/calculate (seq this) ^IFn deep-hash)))

16 E. g. the class java.util.Arrays and the hash implementation for arrays of primitives.
17 E. g. the class clojure.lang.ASeq and it's implementation of hashCode method.

Grzanek. K.

153

Testing for the deep binary equivalence of sequential containers is being
realized in the form of a procedure below. As it was in the case of deep hashes
realizations, it's shape was also influenced by related mechanisms in the Clo-
jure standard library. The mechanism is used also for Strings � as it was stated
earlier they are treated as sequences.

(defn ISeq=ISeq
 [this other]
 (loop [this (seq this)
 other (seq other)]

 (cond (nil? this) (nil? other)
 (nil? other) false
 (not (binary-deep= (first this)
 (first other))) false
 :else (recur (next this) (next other)))))

Another class of container types are the sets and maps, in other words the
associative collections. The implementation of deep equivalence is present in
the described library, but it's full presentation goes deeply beyond the scope of
this paper.

One final mark we must stop at is the tag-based typing. All custom Java
classes as well as Clojure records and types fall within the category of tagged
types. As it was mentioned in the initial sections of the article, the deep, struc-
tural equivalence implemented by the author and described here is targeted
towards duck-typed systems, so the library does not cover the tag-based typ-
ing at all.

References

1. Chugh R., Rondon P.M., Jhala R., 2012, Nested refinements: a logic for duck
typing, POPL '12 Proceedings of the 39th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pp. 231-244

2. Gosling J., Joy B., Steele G., Bracha G., 2005, The JavaTM Language Specifica-
tion Third Edition, ISBN 0-321-24678-0, available at the Oracle Technology
Network (2014) http://docs.oracle.com/javase/specs/

3. Langer A., 2002, Secrets of equals() - Part 1,
www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html

4. Venners B., 2002, Josh Bloch on Design, instanceof versus getClass in equals
Methods, JavaWorld January 4, 2002, www.artima.com/intv/bloch17.html

5. Halloway S., 2009: Programming Clojure, ISBN: 978-1-93435-633-3, The
Pragmatic Bookshelf

6. Emerick Ch., Carper B., Grand Ch., 2012, Clojure Programming, O'Reilly Me-
dia Inc., ISBN: 978-1-449-39470-7

Equivalence In Java And Clojure...

154

7. Kiczales G., Lamping J., Mendhekar A., Maeda Ch., Lopes C., Loingtier J-M.,
Irwin J., 1997, Aspect-Oriented Programming, Proceedings of the European
Conference on Object-Oriented Programming, vol.1241. pp. 220�242

8. Bloch J., 2008, Effective JavaTM Second Edition, Addison-Wesley, ISBN-13:
978-0-321-35668-0

9. Steele G.L., 1990, Common Lisp the Language, 2nd Edition, Digital Press
10. Liskov B., Wing J. 1999, Behavioral Subtyping Using Invariants and Con-

straints, CMU technical report, available as: http://reports-
archive.adm.cs.cmu.edu/anon/1999/CMU-CS-99-156.ps

11. IEEE Computer Society, 2008, IEEE Standard for Floating-Point Arithmetic.
IEEE. doi:10.1109/IEEESTD.2008.4610935. ISBN 978-0-7381-5753-5. IEEE
Std 754-2008

12. Java class java.math.BigDecimal source code, available (2014) as
http://developer.classpath.org/doc/java/math/BigDecimal-source.html

13. Bloch J., Gafter N., 2005, Java¿ Puzzlers: Traps, Pitfalls, and Corner Cases,
Addison-Wesley Professional, ISBN-10: 032133678X, ISBN-13: 978-
0321336781

14. Martin R.C., 2002, The Principles, Patterns, and Practices of Agile Software
Development, Robert C. Martin, Prentice Hall, available as (2014)
http://objectmentor.com/resources/articles/visitor.pdf

15. Google, 2014, Guava Libraries, https://code.google.com/p/guava-libraries/

