PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-temperature growth of InAs/GaSb superlattices on miscut GaAs substrates for mid-wave infrared detectors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
Short-period 10 monolayers InAs/10ML GaSb type-II superlattices have been deposited on a highly lattice-mismatched GaAs (001), 2° offcut towards <110> substrates by molecular beam epitaxy. This superlattice was designed for detection in the mid-wave infrared spectral region (cut-off wavelength, λcut-off = 5.4 μm at 300 K). The growth was performed at relatively low temperatures. The InAs/GaSb superlattices were grown on a GaSb buffer layer by an interfacial misfit array in order to relieve the strain due to the ~7.6% lattice-mismatch between the GaAs substrate and type-II superlattices. The X-ray characterisation reveals a good crystalline quality exhibiting full width at half maximum ~100 arcsec of the zero-order peak. Besides, the grown samples have been found to exhibit a change in the conductivity.
Twórcy
  • Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Laboratoire des Systèmes Lasers, École Militaire Polytechnique, BP 17 Bordj El Bahri, 16111 Algiers, Algeria
Bibliografia
  • [1] Sai‐Halasz, G. A., Tsu, R. & Esaki, L. A new semiconductor superlattice. Appl. Phys. Lett. 30, 651-653 (1977). https://doi.org/10.1063/1.89273
  • [2] Razeghi, M. et al. State-of-the-art type II antimonide-based superlattice photodiodes for infrared detection and imaging. Proc. SPIE 7467, 74670T (2009). https://doi.org/10.1117/12.828421
  • [3] Plis, E. A. InAs/GaSb type-II superlattice detectors. Adv. Electron. 2014, 1-12 (2014). https://doi.org/10.1155/2014/246769
  • [4] Li, Q. et al. SRH supressed P-G-I design for very long-wavelength infrared HgCdTe photodiodes.Opt. Express 30, 16509-16517 (2022). https://doi.org/10.1364/OE.458419
  • [5] Wang, F. et al. Fully depleted self-aligned heterosandwiched Van Der Waals photodetectors. Adv. Mater. 34, 2203283 (2022). https://doi.org/10.1002/adma.202203283
  • [6] Rodriguez, J. B., Christol, P., Cerutti, L. & Chevrier, F. MBE growth and characterisation of type-II InAs/GaSb superlattices for mid-infrared detection. J. Cryst. Growth 274, 6-13 (2005). https://doi.org/10.1016/j.jcrysgro.2004.09.088
  • [7] Grein, C. H., Cruz, H., Flatté, M E. & Ehrenreich, H. Theoretical performance of very long wavelength InAs/In x Ga 1- x Sb superlattice based infrared detectors. Appl. Phys. Lett. 65, 2530-2532 (1994). https://doi.org/10.1063/1.112626
  • [8] Mohseni, H., Litvinov, V. I. & Razeghi, M. Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices. Phys. Rev. B 58, 15378-15380 (1998). https://doi.org/10.1103/PhysRevB.58.15378
  • [9] Plis, E. et al. Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate. Semicond. Sci. Technol. 25, 085010 (2010). https://doi.org/10.1088/0268-1242/25/8/085010
  • [10] Chandola, A., Pino, R. & Dutta, P. S. Below bandgap optical absorption in tellurium-doped GaSb. Semicond. Sci. Technol. 20, 886-893 (2005). https://doi.org/10.1088/0268-1242/20/8/046
  • [11] Bao, T. et al. GaAs Based InAs/GaSb superlattice short wavelength infrared detectors grown by molecular beam epitaxy Chinese Phys. Lett. 26, 028102 (2009). https://doi.org/10.1088/0256-307X/26/2/028102
  • [12] Nguyen, B.-M. et al. Demonstration of midinfrared type-II InAs/GaSb superlattice photodiodes grown on GaAs substrate. Appl. Phys. Lett. 94, 223506 (2009). https://doi.org/10.1063/1.3148326
  • [13] Zhang, X. B., Ryou, J. H. & Dupuis, R. D. Metalorganic chemical vapor deposition growth of high-quality InAs∕GaSb type II superlattices on (001) GaAs substrates. Appl. Phys. Lett. 88, 072104(2006). https://doi.org/10.1063/1.2168668
  • [14] Benyahia, D. et al. Comparative study of the molecular beam epitaxial growth of InAs/GaSb superlattices on GaAs and GaSb substrates. Acta Phys. Pol. A 132, 322-324 (2017). https://doi.org/10.12693/APhysPolA.132.322
  • [15] Johnson, G. R., Cavenette, B. C., Kerr, T. M., Kirby, B. P. & Wood, C. E. C. Optical, Hall and cyclotron resonance measurements of GaSb grown by molecular beam epitaxy. Semicond. Sci. Technol. 3, 1157 (1988). https://doi.org/10.1088/0268-1242/3/12/002
  • [16] Michel, E., Mohseni, H., Kim, J. D. & Wojkowski, J. High carrier lifetime InSb grown on GaAs substrates. Appl. Phys. Lett. 71, 1071-1073 (1997). https//doi.org/10.1063/1.119731
  • [17] Huang, H. S. et al. Strain relief by periodic misfit arrays for low defect density GaSb on GaAs. Appl. Phys. Lett. 88, 131911 (2006). https://doi.org/10.1063/1.2172742
  • [18] Benyahia, D. et al. Interfacial misfit array technique for GaSb Growth on GaAs (001) substrate by molecular beam epitaxy. J. Electron. Mater. 47, 299-304 (2018). https://doi.org/10.1007/s11664-017-5766-4
  • [19] Schmitz, J. et al. Optical and structural investigations of intermixing reactions at the interfaces of InAs/AlSb and InAs/GaSb quantum wells grown by molecular-beam epitaxy. J. Cryst. Growth 150, 858–862 (1995). https://doi.org/10.1016/0022-0248(95)80061-G
  • [20] Fuchs, F. et al. InAs/Ga1-xInxSb infrared superlattice photodiodes for infrared detection. Proc. SPIE 3287, 14-22 (1998). https://doi.org/10.1117/12.304477
  • [21] Haugan, H. J., Szmilowicz, F., Mahalingam, K. & Brown, G. J. Optimization of mid-infrared InAs∕GaSb type-II superlattices. Appl. Phys. Lett. 84, 5410-5412 (2004). https://doi.org/10.1063/1.1767598
  • [22] Sullivan, G. J., Ikhlassi, A., Bergman, J., DeWames, R. E. & Waldrop, J. R. Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors. J. Vac. Sci. Technol. B 23, 1144-1148 (2005). https://doi.org/10.1116/1.1928238
  • [23] Sankowska, I. et al. Non-periodicity of peak-to-peak distances in x-ray diffraction spectrums from perfect superlattices. J. Appl. Phys. 113, 064302 (2013). https://doi.org/10.1063/1.4790712
  • [24] Wei, Y., Gin, A. & Razeghi, M. Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications. Appl. Phys. Lett. 80, 3262-3264 (2002) . https://doi.org/10.1063/1.1476395
  • [25] Kaspia, R., Steinshnider, J., Weimer, M., Moeller, C. & Ongstad, A. As-soak control of the InAs-on-GaSb interface. J. Cryst. Growth 225, 544-549 (2001). https://doi.org/10.1016/S0022-0248(01)00950-2
  • [26] Plis, E. et al. Type-II InAs/GaSb strained layer superlattices grown on GaSb (111) B substrate. J. Vac. Sci. Technol. B 31, 03C123 (2013). https://doi.org/10.1116/1.4798650
  • [27] Wang, G.-W. et al. Growth and characterisation of GaSb-Based type-II InAs/GaSb superlattice photodiodes for mid-infrared detection. Chinese Phys. Lett. 27, 077305 (2010). https://doi.org/10.1088/0256-307X/27/7/077305
  • [28] Renard, C. et al. Indium surface segregation in AlSb and GaSb. J. Cryst. Growth 259, 69-78 (2003). https://doi.org/10.1016/j.jcrysgro.2003.07.010
  • [29] Benyahia, D. et al. Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy. Opto-Electron. Rev. 24, (2016). https://doi.org/10.1515/oere-2016-0007
  • [30] Khoshakhlagh, A. et al. Background carrier concentration in midwave and longwave InAs/GaSb type II superlattices on GaAs substrate. Appl. Phys. Lett. 97, 051109 (2010). https://doi.org/10.1063/1.3457908.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-724508c4-6dbe-4f22-8259-587a2f69bb7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.