PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of multi-nutrients deficiency in cereal plants by the use of chlorophyll fluorescence

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nutrient deficiency (ND) stands as a prominent environmental factor that significantly impacts global plant growth and productivity. While numerous methods have been employed for detecting nutrient deficiencies in plants, many of them are invasive, time-consuming, and costly. In contrast, chlorophyll fluorescence (ChlF) signals have emerged as a non-destructive tool for the identification of specific nutrient deficiencies, such as nitrogen (N), phosphorus (P), and potassium (K), across various plant species. In this pioneering study, ChlF measurements were employed for the first time to detect a combination of nutrient deficiencies, including deficiencies in nitrogen and phosphorus (-NP), nitrogen and potassium (-NK), potassium and phosphorus (-KP), and a complete NPK deficiency (-NPK). The experiment was conducted using wheat (Triticum aestivum) and maize (Zea mays) plants, which were grown under controlled laboratory conditions. An optimal hydroponic system was established to facilitate eight experimental conditions, namely: control, -N, -P, -K, -NP, -NK, -KP, and -NPK. Measurements were systematically collected at two-day intervals over a span of 24 days. Our findings demonstrate that chlorophyll fluorescence signals can enable the differentiation of various nutrient deficiencies even prior to the onset of observable symptoms. Furthermore, the examination of chlorophyll fluorescence parameters enables us not only to identify a singular macronutrient deficiency but also to detect multiple macronutrient deficiencies concurrently in a plant.
Wydawca
Rocznik
Tom
Strony
224--233
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Warsaw University of Life Sciences SGGW, Faculty of Agriculture and Ecology, Warsaw, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, 3 Hrabska Ave, 05-090, Raszyn, Poland
Bibliografia
  • Alam, B., Nair, D. and Jacob, J. (2005) “Low temperature stress modifies the photochemical efficiency of a tropical tree species Hevea brasiliensis: effects of varying concentration of CO 2 and photon flux density,” Photosynthetica, 43(2), pp. 247–252. Available at: https://doi.org/10.1007/s11099-005-0040-z.
  • Aleksandrov, V. (2019) Identification of nutrient deficiency in bean plants by prompt chlorophyll fluorescence measurements and Artificial Neural Networks. [Preprint]. Available at: https://doi.org/10.48550/arXiv.1906.03312.
  • Aleksandrov, V. et al. (2014) “Deficiency of some nutrient elements in bean and maize plants analysed by luminescent method,” Bulgarian Journal of Agricultural Science, 20(1), pp. 24–30. Available at: https://www.agrojournal.org/20/01s-05.pdf (Accessed: October 17, 2023).
  • Azevedo, H., Glória Pinto, C.G. and Santos, C. (2005) “Cadmium effects in sunflower: Membrane permeability and changes in catalase and peroxidase activity in leaves and calluses,” Journal of Plant Nutrition, 28(12), pp. 2233–2241. Available at: https://doi.org/10.1080/01904160500324816.
  • Bąba, W. et al. (2016) “Acclimatization of photosynthetic apparatus of tor grass (Brachypodium pinnatum) during expansion,” PLoS ONE, 11(6), e0156201. Available at: https://doi.org/10.1371/journal.pone.0156201.
  • Bąba, W. et al. (2019) “Discovering trends in photosynthesis using modern analytical tools: More than 100 reasons to use chlorophyll fluorescence,” Photosynthetica, 57(2), pp. 668–679. Available at: https://doi.org/10.32615/ps.2019.069.
  • Balazy, K. et al. (2018) “Large versus small zooplankton in relation to temperature in the Arctic shelf region,” Polar Research, 37(1), 1427409. Available at: https://doi.org/10.1080/17518369.2018.1427409.
  • Bayçu, G. et al. (2017) “Cadmium-zinc accumulation and photo system II responses of Noccaea caerulescens to Cd and Zn exposure,” Environmental Science and Pollution Research, 24(3), pp. 2840–2850. Available at: https://doi.org/10.1007/s11356-016-8048-4.
  • Bosa, K. et al. (2014) “Evaluating the effect of rootstocks and potassium level on photosynthetic productivity and yield of pear trees,” Russian Journal of Plant Physiology, 61(2), pp. 231–237. Available at: https://doi.org/10.1134/S1021443714020022.
  • Brestic, M. et al. (2014) “Reduced glutamine synthetase activity play a role in control of photosynthetic responses to high light in barley leaves,” Plant Physiology and Biochemistry, 81(SI), pp. 74–83. Available at: https://doi.org/10.1016/j.plaphy.2014.01.002.
  • Cetner, M.D. et al. (2017) “Effects of nitrogen-deficiency on efficiency of light-harvesting apparatus in radish,” Plant Physiology and Biochemistry, 119, pp. 81–92. Available at: https://doi.org/10.1016/j.plaphy.2017.08.016.
  • Cetner, M.D. et al. (2020) “Phosphorus deficiency affects the I-step of chlorophyll a fluorescence induction curve of radish,” Photosynthetica, 58, pp. 671–681. Available at: https://doi.org/10.32615/ps.2020.015.
  • Dąbrowski, P. et al. (2019) “Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass,” Sensors, 19(12), 2736. Available at: https://doi.org/10.3390/s19122736.
  • Drusch, M. et al. (2017) “The FLuorescence EXplorer Mission Concept-ESA’s Earth Explorer 8,” IEEE Transactions on Geoscience and Remote Sensing, 55(3), pp. 1273–1284. Available at: https://doi.org/10.1109/TGRS.2016.2621820.
  • Evans, H.J. and Sorger, G.J. (1966) “Role of mineral elements with emphasis on the univalent cations,” Annual Review of Plant Physiology, 17 pp. 47–76. Available at: https://doi.org/10.1146/annurev.pp.17.060166.000403.
  • Esmaeili, S. et al. (2022) “Elevated light intensity compensates for nitrogen deficiency during chrysanthemum growth by improving water and nitrogen use efficiency,” Scientific Reports, 12(1), 10002. Available at: https://doi.org/10.1038/s41598-022-14163-4.
  • Frydenvang, J. et al. (2015) “Sensitive detection of phosphorus deficiency in plants using chlorophyll a fluorescence,” Plant Physiolology, 169(1) pp. 353–61. Available at: https://doi.org/10.1104/pp.15.00823.
  • Goltsev, V. et al. (2012) “Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation,” Biochimica et Biophysica Acta-Bioenergetics, 1817(8), pp. 1490–1498. Available at: https://doi.org/10.1016/j.bbabio.2012.04.018.
  • Goltsev, V. et al. (2016) “Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus,” Russian Journal of Plant Physiology, 63(6), pp. 869–893. Available at: https://doi.org/10.1134/S1021443716050058.
  • Guidi, L. and Degl’Innocenti, E. (2011) “Imaging of chlorophyll a fluorescence: A tool to study abiotic stress in plants,” in A. Shanker and B. Venkateswarlu (eds.) Abiotic stress in plants – Mechanisms and adaptations. IntechOpen. Available at: https://doi.org/10.5772/22281.
  • Hoagland, D.R. and Arnon, D.I. (1950) The water-culture method for growing plants without soil. Berkeley: California Agricultural Experiment Station.
  • Horaczek, T. et al. (2020) “Special issue in honour of Prof. Reto J. Strasser – JIP-test as a tool for early detection of the macronutrients deficiency in Miscanthus plants,” Photosynthetica, 58, pp. 507–517. Available at: https://doi.org/10.32615/ps.2019.177.
  • Jaszczuk, Z.M. et al. (2023) “Does fish stocking rate affect the photosynthesis of Lactuca sativa grown in an aquaponic system?,” Journal of Water and Land Development, 58, pp. 243–252. Available at: https://doi.org/10.24425/jwld.2023.146616.
  • Jose, A. et al. (2021) “Detection and classification of nutrient deficiencies in plants using machine learning,” Journal of Physics, Conference Series, 1850, 012050. Available at: https://doi.org/10.1088/1742-6596/1850/1/012050.
  • Kalaji, H.M. et al. (2014a) “Frequently asked questions about in vivo chlorophyll fluorescence: practical issues,” Photosynthesis Research, 122(2), pp. 121–158. Available at: https://doi.org/10.1007/s11120-014-0024-6.
  • Kalaji, M.H. et al. (2014b) “Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescencje measurements,” Plant Physiology and Biochemistry, 81, pp. 16–25. Available at: https://doi.org/10.1016/j.plaphy.2014.03.029.
  • Kalaji, H.M. et al. (2014c) “The use of chlorophyll fluorescence kinetics analysis to study the performance of photosynthetic machinery in plants,” in Emerging technologies and management of crop stress tolerance. Vol. 2: A sustainable approach. Amsterdam: Elsevier Inc., pp. 347–384. Available at: http://linkinghub.elsevier.com/retrieve/pii/B9780128008751000156 (Accessed: October 11, 2015).
  • Kalaji, H.M. et al. (2016) “Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions,” Acta Physiologiae Plantarum, 38(4). Available at: https://doi.org/10.1007/s11738-016-2113-y.
  • Kalaji, H.M. et al. (2017a) “A comparison between different chlorophyll content meters under nutrient deficiency conditions,” Journal of Plant Nutrition, 40(7), pp. 1024–1034. Available at: https://doi.org/10.1080/01904167.2016.1263323.
  • Kalaji, H.M. et al. (2017b) “Frequently asked questions about chlorophyll fluorescence, the sequel,” Photosynthesis Research, 132(1), pp. 13–66. Available at: https://doi.org/10.1007/s11120-016-0318-y.
  • Kalaji, H.M. et al. (2018a) “Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill?,” Environmental and Experimental Botany, 152, pp. 149–157. Available at: https://doi.org/10.1016/j.envexpbot.2017.11.001.
  • Kalaji, H.M. et al. (2018b) “Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants,” Photosynthesis Research, 136(3), pp. 329–343. Available at: https://doi.org/10.1007/s11120-017-0467-7.
  • Kalaji, H.M. et al. (2018c) “Prompt chlorophyll fluorescence as a tool for crop phenotyping: An example of barley landraces exposed to various abiotic stress factors,” Photosynthetica, 56(3), pp. 953–961. Available at: https://doi.org/10.1007/s11099-018-0766-z.
  • Kalaji, M.H. and Łoboda, T. (2010) Fluorescencja chlorofilu w badaniach stanu fizjologicznego roślin [Chlorophyll fluorescence to study the physiological status of plants]. 2nd edn. Warszawa: Wydawnictwo SGGW.
  • Kan, X. et al. (2017) “Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals,” Environmental and Experimental Botany, 140, pp. 56–64. Available at: https://doi.org/10.1016/j.envexpbot.2017.05.019.
  • Kusaka, M. et al. (2021) “Potassium deficiency impact on the photosynthetic apparatus efficiency of radish,” Photosynthetica, 59(1), pp. 127–136. Available at: https://doi.org/10.32615/ps.2020.077.
  • Mengel, K. and Kirkby, E.A. (1987) Principles of plant nutrition. Bern: International Potash Institute.
  • Murkowski, A. (2002) Effects of some stress factors on chlorophyll luminescence in the photosynthetic apparatus crop plants. Lublin: Bohdan Dobrzański Institute of Agrophysics.
  • Li, X. et al. (2018) “Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations,” Global Change Biology, 24(9), pp. 3990–4008. Available at: https://doi.org/10.1111/gcb.14297.
  • Lotfi, R. et al. (2022) “The role of potassium on drought resistance of winter wheat cultivars under cold dryland conditions: Probed by chlorophyll a fluorescence,” Plant Physiology and Biochemistry, 182, pp. 45–54. Available at: https://doi.org/10.1016/j.plaphy.2022.04.010.
  • Loudari, A. et al. (2020) “Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture,” Journal of Plant Interactions, 15(1), pp. 398–405. Available at: https://doi.org/10.1080/17429145.2020.1841842.
  • Pflug, E.E. et al. (2018) “Resilient leaf physiological response of European beech (Fagus sylvatica L.) to summer drought and drought release,” Frontiers in Plant Science, 9, 187. Available at: https://doi.org/10.3389/fpls.2018.00187.
  • Pontes, M.S., Rodriguez, R.M. and Santiago, F.E. (2019) “The energy flux theory celebrates 40 years: Toward a systems biology concept?,” Photosynthetica, 57, pp. 521–522. Available at: https://doi.org/10.32615/ps.2019.067.
  • Oukarroum, A., Goltsev, V. and Strasser, R.J. (2013) “Temperature effects on pea plants probed by simultaneous measurements of the kinetics of prompt fluorescence, delayed fluorescence and modulated 820 nm reflection,” PLoS ONE, 8(3), e59433. Available at: https://doi.org/10.1371/journal.pone.0059433.
  • R Core Team (2020) R: A Language and Environment for Statistical Computing. Available at: https://www.r-project.org/ (Accessed: October 17, 2023).
  • Ripoll, J. et al. (2016) “A user’s view of the parameters derived from the induction curves of maximal chlorophyll a fluorescence: Perspectives for analyzing stress,” Frontiers in Plant Science, 7, 1679. Available at: https://doi.org/10.3389/fpls.2016.01679.
  • Roldán, M. et al. (2006) “Does green light influence the fluorescence properties and structure of phototrophic biofilms?,” Applied and Environmental Microbiology, 72(4), pp. 3026–3031. Available at: https://doi.org/10.1128/AEM.72.4.3026-3031.2006.
  • Samborska, I.A. et al. (2018) “Structural and functional disorder in the photosynthetic apparatus of radish plants under magnesium deficiency,” Functional Plant Biology, 45(6), pp. 668–679. Available at: https://doi.org/10.1071/FP17241.
  • Samborska, I.A. et al. (2019) “Can just one-second measurement of chlorophyll a fluorescence be used to predict sulphur deficiency in radish (Raphanus sativus L. sativus) plants?,” Current Plant Biology, 19, 100096. Available at: https://doi.org/10.1016/j.cpb.2018.12.002.
  • Samborska-Skutnik, I. et al. (2020) “Structural and functional response of photosynthetic apparatus of radish plants to iron deficiency,” Photosynthetica, 58(2), pp. 205–213. Available at: https://doi.org/10.32615/ps.2019.132.
  • Sieczko, L. et al. (2022) “Early detection of phosphorus deficiency stress in cucumber at the cellular level using chlorophyll fluorescence signals,” Journal of Water and Land Development, Special Issue, pp. 176–186. Available at: https://doi.org/10.24425/jwld.2022.143734.
  • Silva, J.A. and Uchida, R. (2000) Plant nutrient management in Hawaii’s soils approaches for tropical and subtropical agriculture. Mānoa: University of Hawaii.
  • Stirbet, A. and Govindjee (2011) “On the relation between Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient,” Journal of Photochemistry and Photobiology B: Biology, 104, pp. 236–257. Available at: https://doi.org/10.1016/j.jphotobiol.2010.12.010.
  • Strasser, R.J., Srivastava A. and Tsimilli-Michael, M. (2000) “The fluorescence transient as a tool to characterize and screen photosynthetic samples,” in M. Yunus, U. Pathre and P. Mohanty (eds.) Probing photosynthesis mechanism, regulation & adaptation. Boca Raton, London, New York: CRC Press Taylor & Francis Group, pp. 445–483.
  • Strasser, R.J., Tsimilli-Michael, M. and Srivastava, A. (2004) “Analysis of the chlorophyll a fluorescence transient” in G.C. Papageorgiou and Govindjee (eds.) Chlorophyll a fluorescence: A signature of photosynthesis. New York: Springer, pp. 321–362. Availabe at: https://doi.org/10.1007/978-1-4020-3218-9_12.
  • TIBCO Software Inc. (2017). Statistica (Version 14). Available at: https://docs.tibco.com/products/tibco-statistica-14-1-0 (Accessed: October 17, 2023).
  • Tol van der, C., Verhoef, W. and Rosema, A. (2009) “A model for chlorophyll fluorescence and photosynthesis at leaf scale,” Agricultural and Forest Meteorology, 149(1), pp. 96–105. Available at: https://doi.org/10.1016/j.agrformet.2008.07.007.
  • Veazie, P. et al. (2020) “Characterization of nutrient disorders and impacts on chlorophyll and anthocyanin concentration of Brassica rapa var. Chinensis,” Agriculture, 10(10), 461. Available at: https://doi.org/10.3390/agriculture10100461.
  • Vukelić, I.D. et al. (2021) “Effects of Trichoderma harzianum on photosynthetic characteristics and fruit quality of tomato plants,” International Journal of Molecular Sciences, 22(13), 6961. Available at: https://doi.org/10.3390/ijms22136961.
  • Živčak, M. et al. (2014) “Measurements of chlorophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat,” Zemdirbyste-Agriculture, 101(4), pp. 437–444. Available at: https://doi.org/10.13080/z-a.2014.101.056.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-723be9da-8728-4a0e-81b1-b7c52ea5e874
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.