Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to determine the solubility of CO2 in perfluorodecalin (PFD) which is frequently used as efficient liquid carrier of respiratory gases in bioprocess engineering. The application of perfluorinated liquid in a microsystem has been presented. Gas-liquid mass transfer during Taylor (slug) flow in a microchannel of circular cross section 0.4 mm in diameter has been investigated. A physicochemical system of the absorption of CO2 from the CO2/N2 mixture in perfluorodecalin has been applied. The Henry’s law constants have been found according to two theoretical approaches: physical (H = 1.22x10-3 mol/m3Pa) or chemical (H = 1.26x10-3 mol/m3Pa) absorption. We are hypothesising that the gas-liquid microchannel system is applicable to determine the solubility of respiratory gases in perfluorinated liquids.
Czasopismo
Rocznik
Tom
Strony
595--602
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
Bibliografia
- 1. Deschamps J., Menz D.-H., Padua A.A.H., Costa Gomes M. F., 2007. Low pressure solubility and thermodynamics of solvation of oxygen, carbon dioxide, and carbon monoxide in fluorinated liquids. J. Chem. Thermodyn., 39, 847-854. DOI: 10.1016/j.jct.2006.11.012.
- 2. Elibol M., Mavituna F., 1997. Characteristics of antibiotic production in a multiphase system. Proc. Biochem., 32, 417-422. DOI: 10.1016/S0032-9592(96)00099-4.
- 3. Eskin D., Mostowfi F., 2012. A model of a bubble train flow accompanied with mass transfer through a long microchannel. Int. J. Heat Fluid Flow, 33, 147-155. DOI: 10.1016/j.ijheatfluidflow.2011.11.001.
- 4. Kashid M.N., Renken A., Kiwi-Minsker L., 2011. Gas-liquid and liquid-liquid mass transfer in microstructured reactors. Chem. Eng. Sci., 66, 3876-3897. DOI: 10.1016/j.ces.2011.05.015.
- 5. P. Sobieszuk, M. Pilarek, Chem. Process Eng., 2012, 33 (4), 595-602 Krafft M.P., Riess J.G., 1998. Highly fluorinated amphiphiles and colloidal systems and their applications in the biomedical fields. A contribution. Biochimie, 80, 489-514.
- 6. Lowe K.C., 2001. Fluorinated blood substitutes and oxygen carriers. J. Fluorine Chem., 109, 59-65. DOI: 10.1016/S0022-1139(01)00374-8.
- 7. Lowe K.C., 2002. Perfluorochemical respiratory gas carriers: benefits to cell culture systems. J. Fluorine Chem., 118, 19-26. DOI: 10.1016/S0022-1139(02)00200-2.
- 8. Pilarek M., Szewczyk K.W., Stępniewski J., Anderszewska A., 2006. The use of a perfluorinated oxygen vector in cultures of microorganisms. Przem. Chem., 85, 1131-1133.
- 9. Pilarek M., Szewczyk K.W., 2008. Effects of perfluorinated oxygen carrier application in yeast, fungi and plant cell suspension cultures. Bio. Eng. J., 41, 38-42. DOI: 10.1016/j.bej.2008.03.004.
- 10. Pilarek M., Glazyrina J., Neubauer P., 2011a. Enhanced growth and recombinant protein production of Escherichia coli by a perfluorinated oxygen carrier in miniaturized fed-batch cultures. Microb. Cell Fact. 10, art. no. 50. DOI: 10.1186/1475-2859-10-50.
- 11. Pilarek M., Neubauer P., Marx U., 2011b. Biological cardio-micro-pumps for microbioreactors and analytical micro-systems. Sens. Actuators B: Chem., 156, 517-526. DOI: 10.1016/j.snb.2011.02.014.
- 12. Pohorecki R., Moniuk W., 1988. Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions. Chem. Eng. Sci., 43, 1677-1684. DOI: 10.1016/0009-2509(88)85159-5.
- 13. Qian D., Lawal A., 2006. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. Chem. Eng. Sci., 61, 7609-7925. DOI: 10.1016/j.ces.2006.08.073.
- 14. Rappaport C., 2003. Review— Progress in concept and practice of growing anchorage-dependent mammalian cells in three dimension. In Vitro Cell Dev. Biol.-Animal, 39, 187-192. DOI:10.1290/1543-706X(2003)039<0187:RICAPO>2.0.CO;2.
- 15. Riess J.G., 2001. Oxygen carriers (‘Blood substitutes’) – Raison d’Etre, chemistry and some physiology. Chem. Rev., 101, 2797-2919. DOI: 10.1021/cr970143c.
- 16. Riess J.G., 2006. Perfluorocarbon-based oxygen delivery. Artif. Cells, Blood Substit. Biotechnol., 34, 567-580. DOI: 10.1080/10731190600973824.
- 17. Shiba Y., Ohshima T., Sato M., 1998. Growth and morphology of anchorage-dependent animal cells in a liquid/liquid interface system. Biotechnol. Bioeng., 57, 583-589. DOI: 10.1002/(SICI)10970290(19980305)57:5<583::AID-BIT10>3.0.CO;2-D.
- 18. Sobieszuk P., Aubin J., Pohorecki R., 2012. Hydrodynamics and mass transfer in gas-liquid flows in microreactors. Chem. Eng. Tech., 35, 1346-1358. DOI: 10.1002/ceat.201100643.
- 19. Sobieszuk P., Pohorecki R., Cygański P., Grzelka J., 2011. Determination of the interfacial area and mass transfer coefficients in the Taylor gas–liquid flow in a microchannel. Chem. Eng. Sci., 66, 6048-6056. DOI: 10.1016/j.ces.2011.08.029.
- 20. Sobieszuk P., Cygański P., Pohorecki R., 2010. Bubble lengths in the gas-liquid Taylor flow in microchannels. Chem. Eng. Res. Des., 88, 263-296. DOI: 10.1016/j.cherd.2009.07.007.
- 21. Sobieszuk P., Cygański P., Pohorecki R., 2008. Volumetric liquid side mass transfer coefficient in a gas-liquid microreactor. Chem. Proc. Eng., 29, 651-661.
- 22. Ukkonen K., Vasala A., Oyamo H., Neubauer P., 2011. High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer. Microb. Cell Fact., 10, art. no. 107. DOI: 10.1186/1475-2859-10-107.
- 23. Yue J., Chen G., Yuan Q., Luo L., Gonthier Y., 2007. Hydrodynamics and mass transfer characteristics in gasliquid flow through a rectangular microchannel. Chem. Eng. Sci., 62, 2096-2108. DOI: 10.1016/j.ces.2006.12.057.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-723b6aa9-8ecc-4d49-9715-f510cca762eb