PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected Biological Properties of the Soil in a Burnt-Out Area under Old Pine Trees Three Years after an Fire

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wybrane właściwości biologiczne gleby na wypalonym obszarze pod starodrzewami sosny trzy lata po pożarze
Języki publikacji
EN
Abstrakty
EN
Fires, on account of their emotional, economic and cognitive aspects, are of interest to numerous researchers, and their impact is often unpredictable and difficult to investigate. They are among some of the most dynamic factors shaping terrestrial ecosystems. They destroy vegetation and alter the physicochemical and biological properties of the soil. Fires significantly influence the abundance and biodiversity of soil microorganisms and soil mesofauna, which are important elements of soils of every ecosystem, especially forest soils. Restoration of communities of soil organisms takes place at different rates and depends on, among other things, the intensity of the fire. The aim of the research was to determine the degree of restoration of the abundance of microorganisms and mesofauna in areas burnt out by anthropogenic fires of different intensity in an old pine forest. The research was conducted in a two-hundred-year-old pine stand (Peucedano-Pinetum), in the Kampinos National Park (near Warsaw, central Poland). In August 2018, three years after the fires, 3 test areas (10×10 m) were designated on each burnt-out site: after a weak fire (W) and after a strong fire (S), and also in adjacent unburnt (control, C) areas. In each test area, 6 samples were taken both from the organic layer (0-5 cm) and the mineral layer (5-25 cm – for microorganisms, and 5-10 cm for mesofauna) of the soil using standard methods for microorganisms and mesofauna. It was found that three years after the fires, the restoration of communities of soil organisms in terms of numbers was at an advanced stage (this was especially true for soil mesofauna). Based on the PCA analysis, it was found that the restoration of microbial communities and of the communities of mesofauna were interrelated, which was also influenced by the environmental conditions of the soils after the fires, in particular the physico-chemical soil properties resulting from the intensity of the fire.
PL
Pożary, ze względu na emocjonalne, ekonomiczne i poznawcze aspekty, są przedmiotem zainteresowań licznych badaczy, a ich wpływ często jest nieprzewidywalny i trudny do zbadania. Należą do jednych z najbardziej dynamicznych czynników kształtujących ekosystemy lądowe. Niszczą roślinność, zmieniają fizykochemiczne i biologiczne właściwości gleby. Pożary w istotny sposób kształtują liczebność i bioróżnorodność mikroorganizmów glebowych i mezofauny glebowej, będących istotnymi elementami gleb każdego ekosystemu, zwłaszcza gleb leśnych. Odbudowa zespołów organizmów glebowych zachodzi w różnym tempie i zależy między innymi od siły pożaru. Celem badań było ustalenie stopnia odbudowy liczebności mikroorganizmów i mezofauny w obszarach wypalonych po pożarach antropogenicznych o różnej sile w starodrzewie sosnowym. Badania prowadzono w dwustuletnim drzewostanie sosnowym (Peucedano-Pinetum), w Kampinoskim Parku Narodowym (koło Warszawy, centralna Polska). W sierpniu 2018, trzy lata po pożarach wyznaczono po 3 powierzchnie badawcze (10x10 m) na pożarzyskach: po słabym pożarze (W) i mocnym pożarze (S) oraz przyległych obszarach niewypalonych (kontrolnych, C). Na każdej powierzchni badawczej pobierano po 6 prób w warstwie organicznej (0-5 cm) i mineralnej gleby (5-25 cm – w przypadku mikroorganizmów i 5-10 cm w przypadku mezofauny) stosując standardowe metody dla mikroorganizmów i mezofauny. Stwierdzono, że po trzech latach po pożarze odbudowa zespołów organizmów glebowych pod względem liczebności jest w dużym stopniu zaawansowana (dotyczy to zwłaszcza mezofauny glebowej). Na podstawie analizy PCA stwierdzono, że odbudowa zespołów mezofauny i mikroorganizmów są powiązane ze sobą, na co mają wpływ także warunki środowiskowe gleb po pożarze, zwłaszcza właściwości fizykochemiczne gleby, wynikające z siły pożaru.
Rocznik
Strony
1279--1293
Opis fizyczny
Bibliogr. 54 poz., tab., rys.
Twórcy
  • Cardinal Stefan Wyszyński University in Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Poland
  • Main School of Fire Service, Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Poland
  • Warsaw University of Life Sciences – SGGW, Poland
autor
  • Warsaw University of Life Sciences – SGGW, Poland
autor
  • Warsaw University of Life Sciences – SGGW, Poland
  • Kampinos National Park, Poland
  • Warsaw University of Life Sciences – SGGW, Poland
  • Warsaw University of Life Sciences – SGGW, Poland
  • Cardinal Stefan Wyszyński University in Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Poland
autor
  • Warsaw University of Life Sciences – SGGW, Poland
Bibliografia
  • 1. Auclerc, A., Le, Moine, J.M., Hatton, P.J., Bird, J.A., Nadelhoffer, J. (2019). Decadal post-fire succession of soil invertebrate communities is dependent on the soil surface properties in a northern temperate forest. Science of the Total Environment, 647, 1058-1068.
  • 2. Bardgett, R.D., Cook, R. (1998). Functional aspects of soil animal diversity in agricultural grasslands. Applied Soil Ecology, 10, 263-276.
  • 3. Biały, K., Brożek, S., Chojnicki, J., Czępińska-Kamińska, D., Januszek, K., Kowalkowski, A., Krzyżanowski, A., Okołowicz, M., Sienkiewicz, A., Skiba, S., Wójcik, J., Zielony, R. (2000). Klasyfikacja gleb leśnych Polski. Warszawa, Centrum Informacyjne Lasów Państwowych, 1-123.
  • 4. Bowman, D.M.J.S., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A. (2009). Fire in the earth system. Science, 324, 481-484.
  • 5. Bunt, Y.S., Rovira, A.D. (1955). Microbiological studies of some subarctic soils. Journal Soil Science. 6, 119-128.
  • 6. Carrillo, Y., Ball, B.A., Bradford, M.A., Jordan, C.F., Molina, M. (2011). Soil fauna alter the effects of litter composition on nitrogen cycling in a mineral soil. Soil Biology and Biochemistry, 43, 1440-1449.
  • 7. Certini, G., (2005). Effects of fire on properties of forest soils: a review Oecologia, 143, 1-10.
  • 8. Dighton, J., Jones, H.E., Robinson, C.H., Beckett, J. (1997). The role of abiotic factors, cultivation practices and soil fauna in the dispersal of genetically modified microorganisms in soils. Applied Soil Ecology, 5, 109-131.
  • 9. Dooley, S.R., Treseder, K.K. (2012). The effect of fire on microbial biomass: a metaanalysis of field studies. Biochemistry, 109, 49-61.
  • 10. Eisenhauer, N., Sabais, A.C.W., Scheu, S. (2011). Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group indetity. Soil Biology and Biochemistry, 43, 1697-1704.
  • 11. Fioretto, A., Papa, S., Pellegrino, A. (2005). Effects of fire on soil respiration, ATP content and enzyme activities in mediterrnean maquis. Applied Vegetation Science, 8, 13-20.
  • 12. Food and Agriculture Organization of the United Nations (FAO) (2015). International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Rome, Italy, 192.
  • 13. Gongalsky, K.B., Malmström, A., Zaytsev, A.S., Shakhab, S.V., Persson, T., Bentsson, I. (2012). Do burned areas recover from inside? An experiment with soil fauna in a heterogenous landscape. Applied Soil Ecology, 59, 73-86.
  • 14. González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. (2004). The effect of fire on soil organic matter – A review. Environ. Int., 30, 855-870.
  • 15. Górska, E. B, Olejniczak, I, Gozdowski, D, Panek, E, Kondras, M, Oktaba, L, Prędecka, A, Biedugnis, S, Boniecki, P, Tyburski, Ł, Oktaba, I, Skawińska, M, Dobrzyński, J, Jankiewicz, U, Hewelke, E, Kaliszkiewicz, A. (2018). Długoterminowa reakcja mikroorganizmów i mezofauny na pożary pochodzenia antropogenicznego, Rocznik Ochrona Środowiska, 20, 1776-1792.
  • 16. Harden, J.W., Manies, K.L., Turetsky, M.R., Neff, J.C. (2006). Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska. Global Change Biology, 12, 2391-2403.
  • 17. Hauke-Pacewiczowa, T., M. Trzcińska, (1980). Wpływ pożaru dna lasu na aktywność mikrobiologiczna gleby, Roczniki Gleboznawcze XXXI, 2, 33-41.
  • 18. Hågvar, S. (1984). Ecological studies of microarthropods in forest soils, with emphasis on relations to soil acidity. Norvegian Forest Institute, As. Doctoral dissertation. University of Oslo.
  • 19. Hågvar, S. (1995). Long distance, directional migration on snow in a forest collembolan, Hypogastrura socialis (Uzel.) Acta Zoologica Fennica, 196, 200-205.
  • 20. Hewelke, E., Oktaba, L., Gozdowski, D., Kondras, M., Olejniczak, I., & Górska, E. (2018). Intensity and persistence of soil water repellency in pine forest ooil in a temperate continental climate under drought conditions. Water, 10, 1121.
  • 21. Holden, S. R., Berhe, A. A., & Treseder, K. K. (2015). Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire. Soil Biology and Biochemistry, 87, 1-9.
  • 22. Huhta, V., Karppinen, E., Nurminen, M., Valpas, A. (1967). Effects of silvicultural practices upon arthropod, annelid and nematode populations in coniferous forest soil. Annales Zoologici Fennici, 4, 87-143.
  • 23. Huhta, V., Häninen, S.M. (2001). Effects of temperaturę and moisture fluctuations on an experimental soil microarthropod community. Pedobiologia, 45, 279-286.
  • 24. Jalalludin M. (1969) Micro-organic colonization of forest soil after burning. Plant and Soil, 30, 150-152.
  • 25. Kim, J.W., Jung, C. (2008). Abundance of soil microarthropods associated with fores fire severity in Samcheok, Korea. Journal of Asia-Pacific Entomology. 11, 77-81.
  • 26. Knelman, J.E., Graham, E.B., Trahan, N.A., Schmidt, S.K., Nemergut, D.R. (2015). Fire severity shapes plant colonization effects on bacterial community structure, microbial biomass, and soil enzyme activity in secondary succession of a burned forest. Soil Biology and .Biochemistry, 90, 161-168.
  • 27. Köster, K., Berninger, F., Heinonsalo, J., Lindén, A., Köster, E., Ilvesniemi, H., Pumpanen, J. (2011). The long-term impact of low-intensity surface fires on litter decomposition and enzyme activities in boreal coniferous forests. International Journal of Wildland Fire.
  • 28. Lindberg, N., Bengtsson, J. (2006). Recovery of forest soil fauna diversity and composition after repeated summer droughts. Oikos, 114, 494-506.
  • 29. Malmström, A. (2010). The importance of measuring fire severity-Evidence from microarthropod studies. Forest Ecology and Management, 260, 62-70.
  • 30. Malmström, A. (2012). Life-history traits predict recovery patterns in Collembola species after fire: A 10 year study. Applied Soil Ecology, 56, 35-42.
  • 31. Malmström, A., Persson, T., Ahlström, K. (2008). Effects of fire intensity on survival and recovery of soil microarthropods after a clearcut burn. Canadian Journal of Forest. Research, 38, 2465-2475.
  • 32. Malmström, A., Persson, T., Ahlström, K., Gongalsky, K.B., Bengtsson, I. (2009), Dynamics of soil meso- and macrofauna during a 5 year period after clear-cut burning in boreal forest. Applied Soil Ecology, 43, 61-74.
  • 33. Martin, J.P. (1950). Use of acide rose Bengal and steeptomycin in the plate method for estimating of fungi. Soil Science. 69, 215-233.
  • 34. Metz, L.J., Farrier, M.H. (1971). Prescribed burning and soil mesofauna on the Santee Experimental Forest. In: Proceedings, Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, 100-105.
  • 35. Olejniczak, I., Górska, E.B., Kondras, M., Oktaba, L., Gozdowski, D., Jankiewicz, U., Prędecka, A., Dobrzyński, J., Otręba, A., Tyburski, Ł., Mickiewicz, M., Hewelke, E. (2017). Pożar – czynnik kształtujący liczebność mikroorganizmów i mezofauny w glebach leśnych. Rocznik Ochrona Środowiska, 19, 511-526.
  • 36. Querner, P., Bruckner, A., Weigand, E., Prötsch, M. (2010). Short- and long-term effects of fire on the Collembola communities of a sub-alpine dwarf pine ecosystem in the Austrian Alps. Eco. mont – Journal on Protected Mountain Areas Research. 2, 29-36.
  • 37. Petersen, H., Luxton, M. (1982). A comparative analysis of soil faunal populations and their role in decomposition processes. Oikos, 39, 287-388.
  • 38. Petersen, H. (1995). Temporal and spatial dynamics of soil Collembola during secondary succession in Danish heathland. W: Haimi J., Huhta V. (eds.) XI International Colloquium on Soil Zoology, Jyväskylä, Finland 10-14 Aug. 1992 Acta Zoologica Fennica, 196, 190-194.
  • 39. Petersen, H. (2002). General aspects of collembolan ecology at te turn of the millennium. Pedobiologia, 46, 246-260.
  • 40. Prieto-Fernandez, A. Acea, M.J., Carballas, T (1998). Soil microbial and extractable C and N after wildfire. Biology and Fertility of Soils, 27, 132-142.
  • 41. Rodríguez, J., Gonzáles-Perez, J.A., Turmero, A., Hernández, Ball, A.S., Gonzáles-Vila, F.J., Arias, M.E. (2018). Physico-chemical and microbial perturbations of Andalusian pine forest soils following a wildfire. Science of the Total Environment, 634, 650-660.
  • 42. Rusek, J. (1998), Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity and Conservation, 7, 1207-1219.
  • 43. Rutigliano, F.A., Migliorini, M., Maggi, O., D’Ascoli, R.D., Fanciulli, P.P., Persiani, A.M. (2013). Dynamics of Fungi and Fungivorous microarthropods in a Mediterranean maquis soil affected by experimental fire. European Journal of Soil Biology, 56, 33-43.
  • 44. Saifutdinov, R.A., Gongalsky, K.B., Zaitsev, A.S. (2018). Evidence of a trait-specific response to burning in springtails (Hexapoda: Collembola) in the boreal forests of European Russia. Geoderma, 332, 173-179.
  • 45. Seastedt, T.R. (1984). The role of microarthropods in decomposition and mineralization processes. Annual Reviews of Entomology, 29, 25-46.
  • 46. Schneider, K., Renker, C., Scheu, S., Maraun, M. (2004). Feeding biology of oribatid mites: A minireview. Phytophaga 14, 247-256.
  • 47. Shaw, P.J.A. (1997). Post-fire successions of Cllembola in lowland heats in South-Eastern UK. Pedobiologia, 41, 80-87.
  • 48. Tiunov, A.V., Scheu, S. (2005). Arbuscular mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi. Oecologia, 142, 636-642.
  • 49. Van der Putten, W.H., Vet, LEM, Harvey, J.A., Wackers, F.L. (2001). Linking aboveand belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends in Ecology and Evolution, 16, 547-554.
  • 50. Wallwork, A. (1983). Oribatids in forest ecosystems. Annual Review of Entomology, 28, 109-130.
  • 51. Wang, Q., Cen, Z., Zhao, J. (2015). The survival mechanisms of thermophiles at high temperatures: an angle of omics. Physiology (Bethesda), 30, 97-106.
  • 52. Wikars, L.O., Schimmel, J. (2001). Immediate effects of fire severity on soil invertebrates in cut and uncut pine forests. Forest Ecology and Management, 141, 189-200.
  • 53. Zaitsev, A., Gongalsky, K.B., Persson, T., Bengtsson, J. (2014). Connectivity of litter islands remaining after a fire and unburnt forest determines the recovery of soil fauna. Applied Soil Ecology, 83, 101-108.
  • 54. Zaniewski, P.T., Otręba, A. (2017). Reakcja roślinności runa na pożar pokrywy gleby w zespole Peucedano-Pinetum W. Mat. (1962) 1973 w Kampinoskim Parku Narodowym, Sylwan. 161(12), 991-1001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7238d653-d6b8-4f53-8d42-5be0b64d7eba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.