Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Zrobotyzowany automatyczny opryskiwacz pestycydów oparty na technologii wizyjnej do zainfekowanych liści cytrusowych z wykorzystaniem uczenia maszynowego
Języki publikacji
Abstrakty
Smart farming has become a cutting-edge technology to address contemporary issues related to agricultural sustainability. Machine learning (ML) is the engine that powers this evolving technology. The study aims to develop a smart prototype robot to diagnose citrus trees (healthy or infected) using a convolutional neural network (CNN) algorithm. The results of the classification accuracy were 96%. And then, after spraying the affected areas with the pesticide, all farmers in the country can use it to protect themselves from the dangers of pesticides. The results were good and promising.
Inteligentne rolnictwo stało się najnowocześniejszą technologią rozwiązującą współczesne problemy związane ze zrównoważonym rolnictwem. Uczenie maszynowe (ML) to silnik napędzający tę rozwijającą się technologię. Badanie ma na celu opracowanie inteligentnego prototypu robota do diagnozowania drzew cytrusowych (zdrowych lub zainfekowanych) za pomocą algorytmu konwolucyjnej sieci neuronowej (CNN). Wyniki trafności klasyfikacji wyniosły 96%. Następnie, po spryskaniu dotkniętych obszarów pestycydami, wszyscy rolnicy w kraju mogą go użyć do ochrony przed niebezpieczeństwami związanymi z pestycydami. Wyniki były dobre i obiecujące.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
98--101
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Department of Computer Techniques Engineering, Technical Engineering College, Northern Technical University, Mosul, Iraq
autor
- Department of Computer Techniques Engineering, Technical Engineering College, Northern Technical University, Mosul, Iraq
Bibliografia
- 1. Gondchawar, N. and Kawitkar, R. S., IoT-based smart agriculture. International Journal of advanced research in Computer and Communication Engineering, 5(6), 838-842, (2016).
- 2. R. Miller, Reliability of soil and plant analyses for making nutrient recommendations, Western Nutrient Management Conference, 2013.
- 3. K. Muthukannan, P. Latha, R.P. Selvi and P. Nisha, Classification of diseased plant leaves using neural network algorithms, ARPN Journal of Engineering and Applied Sciences, Vol. 10, No. 4, pp. 1913-1919, (2015).
- 4. K.Gayathri DEVI, C.Senthil KUMAR, B.Kihori, A Survey on the Design of Autonomous and Semi-Autonomous Pesticide Sprayer Robot, El-Cezerî Journal of Science and Engineering Vol: 9, No: 1, (371-381), (2022).
- 5. J. Chmielińska and J. Jakubowski, Application of convolutional neural network to the problem of detecting select ed symptoms of driver fatigue, Przegląd Elektrotechniczny,vol. 93, no. 10, pp. 6-10, 2017.
- 6. M. GHAZAL1, R. ALBASRAWI, N. WAISI and M. AL HAMMOSHI, Smart Meeting Attendance Checking Based on A multi-biometric Recognition Syste , Przegląd Elektrotechniczny, ISSN 0033-2097, R. 98 NR 3/2022.
- 7. Shubhangi B. Londhe and K. Sujata, Remotely Operated Pesticide Sprayer Robot in Agricultural Field, International Journal of computer Application (0975-8887), Vol.167-No.3, 2017.
- 8. Zulkifli Bin H., Abdul Hallis Bin Ab. and Ali Yeon Bin MdShakaffRohaniBinti S Mohamed Farook, "Feasibility Study on Plant Chili Disease Detection Using Image Processing Techniques," Third International Conference on Intelligent Systems Modelling and Simulation. Vol. 07, 2016.
- 9. L. J. Ganesh1, Mohith N. Raate, Nithin T. N3, Pavan G. and Nithyashree S., "Precision Agriculture Robot for Seeding Function and Leaf Disease Detection," International Journal of Engineering Research & Technology (IJERT) ISSN:2278-0181, Vol. 9 Issue 08, August-2020
- 10. Q. Meng, R. Qiu, J. He, M. Zhang, X. Ma, and G. Liu, "Development of agricultural implement System based on machine vision and fuzzy control," Comput. Electron. Agricult., Vol. 112, pp.128–138, 2015
- 11. S. Rao, S. Nayak R, Sushmitha N G, S. Poojary and N.Rao'' Agri Robo '', International Journal of Engineering Research in Electronics and Communication Engineering (IJERECE), Vol 6, Issue 5, May 2019.
- 12. N. FatihahSahidan, A. Juha, N. Mohammad and Z. Ibrahim, "Flower and leaf recognition for plant identification using convolutional neural network," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 16, No. 2, 2019, pp. 737-743, DOI: 10.11591/ijeecs.v16.i2.pp737-743.
- 13. Rincón, V.J.; Grella, M.; Marco, P.; Alcatrão, L.E.; Sanchez Hermosilla, J.; Balsari, P. Spray performance assessment of a remote-controlled vehicle prototype for pesticide application in greenhouse tomato crops. Sci. Total Environ. 2020, 726, 138509. 14.
- 14. V. Kukreja and P. Dhiman, "A Deep Neural Network based disease detection scheme for Citrus fruits," International Conference on Smart Electronics and Communication (ICOSEC), 2020, pp. 97-101, doi:10.1109/ICOSEC49089.2020.9215359.
- 15. W. Jia, Y. Tian, R. Luo, Z.Zhang, J.Lian & Y.Zheng '' Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot'', Computers and Electronics in Agriculture, Volume 172, May 2020.
- 16. Sanida, Maria V., Theodora S., Argyrios S., and Minas D., "An Efficient Hybrid CNN Classification Model for Tomato Crop Disease" Technologies 11, no. 1: 10. 2023 https://doi.org/10.3390/technologies11010010
- 17. A. KHATTAK, M. ASGHAR, U. BATOOL, M. ASGHAR, H. ULLAH, M. AL-RAKHAMI and A. GUMAEI, "Automatic Detection of Citrus Fruit and Leaves Diseases Using Deep Neural Network Model," IEEE Access, Vol. 9, 2021, DOI 10.1109/ACCESS.2021.3096895.
- 18. YonghuaY., Xiaosong A. , J. Lin , ShanjunLi & Y. Chen'' A vision system based on CNN-LSTM for robotic citrus sorting''Information Processing in Agriculture, June 2022
- 19. panel R. M., Larissa F. R. M., Pablo L. A.M., Everaldo A.L. and Renato A. A. " AgroLens: A low-cost and green-friendly Smart Farm Architecture to support real-time leaf disease diagnostics" Internet of Things V. 19, August 2022
- 20. Lokanadam J K S Sai Ganesh, Mohith N Raate, Nithin T N., Pavan G& Nithyashree S, " Precision Agriculture Robot and Leaf Disease Detection'', International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 9 Issue 08, August-2020
- 21. F. Sultana, A. Sufian, and P. Dutta. "Advancements in image classification using convolutional neural network." In 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pages 122–129, Nov 2018.
- 22. N. Sahidan, A. Juha and Z. Ibrahim, “Evaluation of basic convolutional neural network and bag of features for leaf recognition”, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 14, No. 1, 2019, DOI: 10.11591/ijeecs.v14.i1.pp327-332.
- 23. NVIDIA company developer .nvidia.com /embedded/jetson nano
- 24. Ahmad F. and Bashar H., Detecting the usage of a mobile phone during an online test using AI technolog, Przegląd Elektrotechniczny, ISSN 0033-2097, R. 98 NR 11/2022, doi:10.15199/48.2022.11.11
- 25. Vijay A. Kotkar, Anuja A. Ghute, Shweta A. Bhosale, Kiran T. Hajare. "An automatic pesticide sprayer algorithms and spraying pesticide on affected crops''Turkish Journal of Computer and Mathematics Education Vol.12 No.1S (2021), 65-72.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7236f987-f16c-45cf-88e5-7cdc21db6aca