PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Instrumental methods applied in the investigations of carbonate minerals in the Middle Jurassic sideritic rocks with respect to diagenetic processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Metody instrumentalne stosowane w badaniu minerałów węglanowych skał syderytowych jury środkowej w kontekście diagenezy
Języki publikacji
EN
Abstrakty
EN
Carbonate minerals in the Middle Jurassic sideritic rocks from the Polish Lowlands, north-eastern margin of the Holy Cross Mountains and the Częstochowa region have been studied applying accessible instrumental methods. The following techniques were applied: polarization microscope, staining with the Evamy’s solution, cathodoluminescence, microprobe, fluid inclusions and isotopic analyses. Most of these methods were not available either in the 20ies of the past century when studies of sideritic iron ores in Poland had begun, or in 50ies and 60ies when they were in full progress. The sideritic rocks are mainly represented by clayey siderites (they contain also muddy and sandy varieties), sideritic sandstones and sideritic coquina, less frequently by sideritic conglomerates and mudstones. Sideroplesite is the main carbonate mineral that builds the sideritic rocks, while pistomesite and siderite are less frequent. Fe-calcite and Fe-dolomite, ankerite, and sporadic dolomite occur in lesser amounts. Syderoplesite and siderite have crystallized in the early diagenesis (eodiagenesis), in the zone of microbiologic methanogenesis, at temperatures of about 20°C, from the porous waters of marine origin, or from marine waters mixed with fresh waters. Sideroplesite enriched in magnesium, pistomesite, calcite and ankerite sequently have formed at the later diagenetic stage (mezodiagenesis). These minerals have crystallized at temperatures above 60°C, from the porous waters of marine origin, or from the fluid which interacted with the adjacent rocks. Fe-calcite was formed in the zone of microbiologic methanogenesis, while the ankerite – in the zone of thermal decarboxylation.
Na podstawie dostępnych obecnie metod instrumentalnych zbadano minerały węglanowe skał syderytowych jury środkowej z Niżu Polskiego, północno-wschodniego obrzeżenia Gór Świętokrzyskich i rejonu Częstochowy. Zastosowano: mikroskop polaryzacyjny, barwienie roztworem Evamy’ego, katodoluminescencję, mikrosondę energetyczną, analizę inkluzji fluidalnych i izotopową. Większość z tych metod nie była dostępna w latach dwudziestych, kiedy rozpoczęto badania syderytowych rud żelaza w Polsce, ani w latach pięćdziesiątych i sześćdziesiątych, kiedy były kontynuowane. Skały syderytowe są reprezentowane głównie przez: syderyty ilaste (obejmują również odmiany mułkowe i piaszczyste), piaskowce syderytowe i muszlowce syderytowe, rzadziej przez zlepieńce syderytowe i mułowce syderytowe. Głównym minerałem węglanowym budującym skały syderytowe jest syderoplesyt, rzadziej pojawiają się pistomesyt i syderyt. W zmiennych ilościach występują Fe-kalcyt oraz Fe-dolomit i ankeryt, sporadycznie dolomit. Syderoplesyt i syderyt krystalizowały we wczesnej diagenezie (eodiagenezie) w strefie mikrobiologicznej metanogenezy w temperaturze ok. 20°C z wód porowych pochodzenia morskiego lub wód morskich zmieszanych z wodami słodkimi. W późniejszym etapie diagene¬zy (mezodiagenezie) tworzyły się w kolejności: syderoplesyt z większą zawartością magnezu, pistomesyt, kalcyt i ankeryt. Minerały te krystalizowały w temperaturze powyżej 60°C z wody porowej pochodzenia morskiego lub wody, która weszła w reakcję z otaczającymi skałami. Fe-kalcyt tworzył się w strefie mikrobiologicznej metanogenezy, natomiast ankeryt w strefie termalnej dekarboksylacji.
Rocznik
Tom
Strony
31--42
Opis fizyczny
Bibliogr. 65 poz., rys., zdj.
Twórcy
  • Polish Geological Institute – National Research Institute, 4 Rakowiecka Street, 00-975 Warsaw, Poland
Bibliografia
  • 1. AL-AASM I.S., TAYLOR B.E., SOUTH B., 1990 – Stable isotope analysis of multiple carbonate samples using selective acid extraction. Chem. Geol., 80: 119–125.
  • 2. BAKER J.C., KASSAN J., HAMILTON P.J., 1995 – Early diagenetic siderite as indicator of depositional environment in the Triassic Rewan Group, Southern Bowen basin, eastern Australia. Sedimentology, 43, 1: 77–88.
  • 3. BAKKER R.J., BROWN P. E., 2003 – Computer modeling in fluid inclusion research. In: Fluid inclusions: Analysis and interpretation (eds. I. Samson et al.). Mineralogical Association of Canada. Short Course, 32: 175–203.
  • 4. BERG G., 1944 – Vergleichende Petrographie oolitisher Eisenerze. Arch. Lagerstättenforsch, 76: 1–126.
  • 5. BOLEWSKI A., 1982 – Mineralogia szczegółowa. Wydaw. Geol. Warszawa.
  • 6. BROWN P.E., 1989 – FLINCOR: A microcomputer program for the reduction and investigation of fluid inclusion data. Am. Min., 74: 1390–1393.
  • 7. CHOQUETTE P.W., PRAY L.C., 1970 – Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull., 54, 2: 207–220.
  • 8. CORRENS C.W., 1942 – Die Eisengehalt der marinen Sedimente und seine Entstehung. Arch. f. Lagerstättenforschung, 75: 47–57.
  • 9. CORRENS C.W., 1952 – Zur Geochemie des Eisens. Congr. Geol. Intern. Symposium des gisements de fer du Monde, 2: 1–23.
  • 10. DADLEZ J., 1963 – Niektóre wyniki badań nad wykształceniem i rudonośnością wezulu w okolicach Kamienia Pomorskiego. Biul. Inst. Geol., 168: 5–36.
  • 11. DADLEZ J., 1964 – Wyniki badań rudonośności osadów wezulu w rejonie Niczonowa. National Geological Archives PGI-NRI, Warsaw.
  • 12. DADLEZ R., MAREK S., 1969 – Styl strukturalny kompleksu cechsztyńsko-mezozoicznego na niektórych obszarach Niżu Polskiego. Kwart. Geol., 13, 3: 543–565.
  • 13. DURAKIEWICZ T., 1996 – Electron emission controller with pulsed heating of filament. Int. J. Mass. Spectr. Ion Proc., 156: 31–40.
  • 14. DURAKIEWICZ T., HAŁAS S., 1994 – Triple collector system for isotope ratio mass spectrometer. IF UMCS Repor., 131–132.
  • 15. EKIERT E., 1966 – Opracowanie petrograficzne doggerskich rud żelaza w rej. Częstochowy. National Geological Archives PGI-NRI, Inw. 27679, Warsaw.
  • 16. FELDMAN-OLSZEWSKA A., 2005 – Środowiska sedymentacji w jurze środkowej Kujaw. Praca doktorska. National Geological Archives PGI-NRI, Inw. 1856/2006, Warsaw.
  • 17. GAUTIER D.L., CLAYPOOL G.E., 1984 – Interpretation of mathanic diagenesis in ancient sediments by analogy with processes in modern diagenetic environments. In: Clastic diagenesis (eds. D.A. McDonald, R.C. Surdam). AAPG mem., 37: 111–123.
  • 18. GOLDSTEIN R.H., 2001 – Fluid inclusions in sedimentary and diagenetic systems. Lithos, 55: 159–193.
  • 19. GOLDSTEIN R.H., REYNOLDS T.J., 1994 – Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course, 31.
  • 20. HAŁAS S., 1979 – An automatic inlet system with pneumatic changeover valves for isotope ratio mass spectrometer. J. Phys. E. Sci. Instrum., 18: 417–420.
  • 21. HAŁAS S., CHLEBOWSKI R., 2004 – Unique siderite occurrence in Baltic Sea: a clue to siderite-water oxygen isotope fractionation at low temperatures. Geol. Quart., 48, 1: 317–322.
  • 22. HAŁAS S., SKORZYŃSKI Z., 1980 – An unexpensive device for digital measurements of isotopic ratios. J. Phys. E. Sci. Instrum., 13: 346–349.
  • 23. IRVIN H., CURTIS C., COLEMAN M., 1977 – Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269: 209–213.
  • 24. JARMOŁOWICZ-SZULC K., 1999 – Systematyka inkluzji fluidalnych w wypełnieniach przestrzeni porowej skał osadowych paleozoiku Niżu Polskiego. Prz. Geol., 47, 6: 542–546.
  • 25. JARMOŁOWICZ-SZULC K., KOZŁOWSKA A., 2016 – Temperature and isotopic relations in carbonate minerals in the Middle Jurassic sideritic rocks of central and southern Poland. Geol. Quart., 60, 4: 881–892.
  • 26. JASKÓLSKI S., 1928 – Złoża oolitowych rud żelaznych obszaru częstochowskiego. Rocz. Pol. Tow. Geol., 4: 1–91.
  • 27. JASKÓLSKI S., SAWICKA-EKIERT E., 1955 – Badania petrograficzne (Badania geologiczne iłów rudonośnych). Biul. Inst. Geol., (nr zastrz.).
  • 28. KOZŁOWSKA A., 1997 – Cementy węglanowe w piaskowcach górnokarbońskich w północno-zachodniej części rowu lubelskiego. Prz. Geol., 45, 3: 301–304.
  • 29. KOZŁOWSKA A., 2001 – Syderyty magnezowe w piaskowcach górnokarbońskich środkowej Polski. Prz. Geol., 49, 4: 343–344.
  • 30. KOZŁOWSKA A., 2004 – Diageneza piaskowców górnego kar¬bonu na pograniczu rowu lubelskiego i bloku warszawskiego. Biul. Państw. Inst. Geol., 411: 5–70.
  • 31. KOZŁOWSKA A., 2014 – Diageneza skał syderytowych jury środkowej na południe od Tomaszowa Mazowieckiego. Konferencja Jurassica XI, Jurajskie utwory synkliny tomaszowskiej, Spała 9–11.10.2014. Przewodnik wycieczek terenowych, abstrakty i artykuły, 50.
  • 32. KOZŁOWSKA A., MALISZEWSKA A., 2015 – Berthieryn in the Middle Jurassic sideritic rocks from southern Poland. Geol. Quart., 59, 3: 551–564.
  • 33. KOZŁOWSKA A., FELDMAN-OLSZEWSKA A., KUBERSKA M., MALISZEWSKA A., ZŁONKIEWICZ Z., 2008 – Skały syderytowe jury środkowej w północnym obrzeżeniu Gór Świętokrzyskich a warunki ich sedymentacji i diagenezy. National Geological Archives PGI-NRI, Warsaw
  • 34. KOZŁOWSKA A., FELDMAN-OLSZEWSKA A., KUBERSKA M., MALISZEWSKA A., 2011 – Sedimentary environments and diagenesis of the Middle Jurassic siderites in the North Margin of the Holy Cross Mountains, Poland. Book of Abstracts (eds. B. Badenas et al.). 28th Meeting of Sedimentolo¬gy, 5–8 July 2011, Saragossa, Spain (IAS 2011), online: https:// www.academia.edu/30274916/Abstracts_28th_IAS (07.2011): 522.
  • 35. KOZŁOWSKA A., FELDMAN-OLSZEWSKA A., JARMOŁOWICZ-SZULC K., KUBERSKA M., MALISZEWSKA A., 2012 – The Middle Jurassic siderites from Częstochowa– Wieluń area, southern Poland. Proceedings of the 34 IGC, 5–10.08. 2012, Brisbane, Australia, 1526.
  • 36. KOZŁOWSKA A., FELDMAN-OLSZEWSKA A., JARMOŁOWICZ-SZULC K., KUBERSKA M., MALISZEWSKA A., 2013 – Diageneza syderytowych rud żelaza jury środkowej z północnego obrzeżenia Gór Świętokrzyskich i obszaru częstochowsko-wieluńskiego. Arch. MNiSW, Warszawa.
  • 37. KRAJEWSKI K.P., ŁĄCKA B., KUŹNIARSKI M., ORŁOWSKI M., PREJBISZ A., 2001 – Diagenetic origin of carbonate in the Marhøgda Bed (Jurassic) in Spitsbergen, Svalbard. Pol. Polar Res., 22, 2: 89–128.
  • 38. KUŹNIAR C., 1924 – O rudach żelaznych okolic Chlewisk. Posiedz. Nauk. Państw. Inst. Geol., 8: 1–2.
  • 39. KUŹNIAR C., 1925 – O rudach żelaznych okolic Stąporkowa. Posiedz. Nauk. Państw. Inst. Geol., 10: 6–7.
  • 40. KUŹNIAR C., 1928 – Złoże rud żelaznych oolitowych w Parczewie. Spraw. Państw. Inst. Geol., 4, 3/4: 710–763.
  • 41. LOTT G., WONG T., DUSAR M., ANDSBJERG J., MONNIG E., FELDMAN-OLSZEWSKA A., VERREUSSEL R., 2010 – Jurassic. In: Petroleum geological atlas of the southern Permian Basin area (eds. H. Doornenbal, A. Stevenson). EAGE Publications, Houten: 173–193.
  • 42. MALISZEWSKA A., KOZŁOWSKA A., KUBERSKA M., 2006 – Origin of Middle Jurassic siderite rocks from Central Poland. Volumina Jurassica, 4: 95–96.
  • 43. MALISZEWSKA A., KOZŁOWSKA A., KUBERSKA M., 2007a – Petrologia jurajskich skał syderytowych na Niżu Polskim. Arch. MNiSW, Warszawa.
  • 44. MALISZEWSKA A., KOZŁOWSKA A., KUBERSKA M., 2007b – Diageneza skał syderytowych jury środkowej z centralnej i północno-zachodniej Polski. Prz. Geol., 55, 4: 297–298.
  • 45. MALISZEWSKA A., KOZŁOWSKA A., KUBERSKA M., 2018 – Skały syderytowe jury środkowej Kujaw – studium petrologiczne. Prz. Geol., 66, 4: 118–129.
  • 46. MARSHALL D.J., 1988 – Cathodoluminescence of geological materials. Unwin Hyman. Boston.
  • 47. MATSUMOTO R., IIJIMA A., 1981 – Origin and diagenetic evolution of Ca-Mg-Re carbonates in some coalfields of Japan. Sedimentology, 28: 239–259.
  • 48. McCREA J.M., 1950 – On the isotopic geochemistry of carbonates and a paleotemperature scale. J. Chem. Phys., 18: 849–857.
  • 49. MIGASZEWSKI Z., NARKIEWICZ M., 1983 – Identyfikacja pospolitych minerałów węglanowych przy użyciu wskaźników barwiących. Prz. Geol., 4: 258–261.
  • 50. MORAD S., 1998 – Carbonate cementation in sandstone: distribution patterns and geochemical evolution. In: Carbonate cementation in sandstones (ed. S. Morad). Spec. Publ. Int. Ass. Sedim., 26: 1–26.
  • 51. MORAD S., BEN ISMAIL H.N., De ROS L.F., AL-AASM I.S., SHERRHINI N.E., 1994 – Diagenesis and formation water chemistry of Triassic reservoir sandstones from Southern Tunisia. Sedimentology, 41, 6: 1253–1272.
  • 52. MOZLEY P.S., 1989 – Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology, 17, 8: 704–706.
  • 53. MOZLEY P.S., HOERNLE K., 1990 – Geochemistry of carbonate cements in the Sag River and Shublik Formations (Triassic/ Jurassic), North Slope, Alaska: Implications for the geochemical evolution of formation waters: Sedimentology, 37, 5: 817– 836.
  • 54. MÜCKE A., 2006 – Chamosite, siderite and the environmental conditions of their formation in chamosite-type Phanerozoic ooidal ironstones. Ore Geol. Rev., 28: 235–249.
  • 55. PEARSON M.J., 1979 – Geochemistry of the Hepworth Carboniferous sediment sequence and origin of the diagenetic iron minerals and concretions. Geochim. et Cosmochim. Acta, 43, 6: 927–941.
  • 56. POSTMA D., 1969 – Formation of siderite and vivianite and the pore-water composition of a Recent bog sediment in Denmark. Chem. Geol., 31: 225–244.
  • 57. PRICE G.D., SELLWOOD B.W., 1997 – „Warm” palaeotemperatures from high Late Jurassic palaeolatitudes (Falkland Plateau): Ecological, environmental or diagenetic controls? Palaeogeogr., Palaeoclimatol., Palaeocol., 129: 315–327.
  • 58. PYE K., 1981 – Marshrock formed by iron sulphide and siderite cementation in saltmarsh sediments. Nature, 294: 650–652.
  • 59. REZAEE M.R., SCHULZ-ROJAHN J.P., 1998 – Application of quantitative back-scattered electron image analysis in isotope interpretation of siderite cement: Tirrawarra sandstone, Cooper Basin, Australia. In: Carbonate cementation in sandstones (ed. S. Morad). Spec. Publ. Int. Ass. Sediment., 26: 461–481.
  • 60. STEL H., 2009 – Diagenetic crystallization and oxidation of siderite in red Bed (Buntsandstein) sediments from the Central Iberian Chain, Spain. Sediment. Geol., 213: 89–96.
  • 61. TAUPITZ K.CH., 1954 – Über Sedimentation, Diagenese, Metamorphose, Magmatismus und die Entstehung der Erzlager-stätte. Chemie d. Erde, 27, 2: 104–164.
  • 62. TAYLOR J.W., 1949 – Petrology of the Northampton Sand Ironstone Formation. Mem. Geol. Surv. Great Britain., 1–94.
  • 63. TURNAU-MORAWSKA M., 1961 – Charakterystyka petrograficzna utworów rudonośnych wezulu łęczyckiego. Biul. Inst. Geol., 172: 5–69.
  • 64. WEBER J.N., WILLIAMS E.G., KEITH M.L., 1964 – Paleoenvironmental significance of carbon isotopic composition of siderite nodules in some shales of Pensylvanian age. J. Sediment. Petrol., 34, 4: 814–818.
  • 65. ZYMELA S., 1996 – Carbon, oxygen and strontium isotopic composition of diagenetic calcite and siderite from the Upper Cretaceous Cardium Formation of Western Alberta [pr. doktor.]. McMaster University, Canada, online: http://www.collectionscanada.gc.ca/obj/s4/f2/dsk2/ftp03/NQ30184.pdf (10.2010).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7233ae3b-d8f7-4dc3-ba78-107c2cdb653b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.