PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Plasticized Cellulose Triacetate Membranes for Recovery and Separation of Cerium(III) and Lanthanum(III)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work explains the application of plasticized cellulose triacetate (CTA) membranes with Cyanex 272 di(2,4,4-(trimethylpentyl)phosphinic acid) and Cyanex 301 (di(2,4,4-trimethylpentyl)dithiophosphinic acid) as the ion carriers of lanthanum(III) and cerium(III). CTA is used as a support for the preparation of polymer inclusion membrane (PIM). This membrane separates the aqueous source phase containing metal ions and the receiving phase. 1M H2SO4 is applied as the receiving phase in this process. The separation properties of the plasticized membranes with Cyanex 272 and Cyanex 301 are compared. The results show that the transport of cerium(III) through PIM with Cyanex 272 is more efficient and selective than lanthanum(III).
Rocznik
Strony
312--317
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Department of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Czestochowa, Poland
autor
  • Department of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Czestochowa, Poland
Bibliografia
  • [1] Regel-Rosocka, M., Nowak, L., Wisniewski, M. (2012). Removal of Zn(II) and iron ions from chloride solutions with phosphonium ionic liquids. Separation and Purification Technology, 97, 158–163.
  • [2] Baczynska, M., Rzelewska M., Regel-Rosocka, M., Wisniewski, M. (2016). Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier. Chemical Papers, 70(2), 172–179.
  • [3] Makowka, A., Pospiech, B. (2019). Synthesis of polymer inclusion membranes based on cellulose triacetate for recovery of lanthanum(III) from aqueous solutions. Autex Research Journal, 19(3), 288–292.
  • [4] Pospiech, B. (2015). Studies on extraction and permeation of cadmium(II) using Cyphos IL 104 as selective extractant and ion carrier. Hydrometallurgy, 154, 88–94.
  • [5] Pospiech, B. (2015). Application of phosphonium ionic liquids as ion carriers in polymer inclusion membranes (PIMs) for separation of cadmium(II) and copper(II) from aqueous solutions. Journal of Solution Chemistry, 44, 2431–2447.
  • [6] Pospiech, B. (2018). Facilitated transport of palladium(II) across polymer inclusion membranes with ammonium ionic liquid as effective carrier. Chemical Papers, 72, 301–308.
  • [7] Ansari, A. S., Mahopatra, P. K., Manchandra, V. K. (2010). Cation transport across plasticized membranes containing N,N,N′,N′-tetraoctyl-3-oxapentanediamide (TODGA) as the carrier. Desalination, 262, 196–201.
  • [8] Kusumocahyo, S. P., Kanamori, T., Sumaru, K., Aomatsu, S., Matsuyama, H., et al. (2004). Development of polymer inclusion membranes based on cellulose triacetate: Carrier-mediated transport of cerium(III). Journal of Membrane Science, 244, 251–257.
  • [9] Zaheri, P., Ghassabzadeh, H. (2017). Preparation of polymer inclusion membrane including mixture of D2EHPA and Cyanex 272 for the extraction of Eu from nitrate media. Chemical Papers, 71, 1623–1631.
  • [10] Wang, D., Hu, J., Liu, D., Chen, Q., Li, J. (2017). Selective transport and simultaneous separation of Cu(II), Zn(II) and Mg(II) using a dual polymer inclusion membrane system. Journal of Membrane Science, 524, 205–213.
  • [11] Danesi, P. R. (1984). Separation of metal species by supported liquid membranes. Separation and Purification Technology, 19, 857–894.
  • [12] Kozlowska, J., Kozlowski, C. A., Walkowiak, W. (2007). Transport of Zn(II), Cd(II), and Pb(II) across CTA plasticized membranes containing organophosphorous acids as ion carriers. Separation and Purification Technology, 57, 430–434.
  • [13] Lister, T. E., Wang, P., Anderko, A. (2014). Recovery of critical and value metals from mobile electronics enabled by electrochemical processing. Hydrometallurgy, 149, 228–237.
  • [14] Jha, M. K., Kumari A., Pand, R., Kumar, J. R., Yoo, K., et al. (2016). Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy, 165, 2–26.
  • [15] Xie, F., Zhang, T. A., Dreisinger, D., Doyle, F. (2014). A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering, 56, 10–28.
  • [16] Zhao, Z., Qiu, Z., Yang, J., Lu, S., Cao, L., et al. (2017). Recovery of rare earth elements from spent fluid catalytic cracking catalysts using leaching and solvent extraction techniques. Hydrometallurgy, 167, 183–188.
  • [17] Abhilash Sinha, S., Sinha, M. K., Pandey, B. D. (2014). Extraction of lanthanum and cerium from Indian red mud. International, Journal of Mineral Processing, 127, 70–73.
  • [18] Bhattacharyya, A., Mohapatra, P. K., Ansari, S. A., Raut, D. R., Manchanda, V. K. (2008). Separation of trivalent actinides from lanthanides using hollow fiber supported liquid membrane containing Cyanex 301 as the carrier. Journal of Membrane Science, 312, 1–5.
  • [19] Mishra, S., Sahu, S. K. (2016). Solvent extraction of Ce(III) from nitric acid medium using binary mixture of PC 88A and Cyanex 921. Hydrometallurgy, 166, 252–259.
  • [20] Abdeltawab, A., Nii, S., Kawaizumi, F., Takahashi, K. (2002). Separation of La and Ce with PC-88A by counter-current mixer-settler extraction column. Separation and Purification Technology, 26, 265–272.
  • [21] Zaheri, P., Ghassabzadeh, H., Abolghasemi, H., Maraghe, M. G., Mohammadi, T. (2017). Facilitated transport of europium through supported liquid membrane Rusing 272 as Cartier and mass transfer modeling. The Canadian Journal of Chemical Engineering, 95, 524–534.
  • [22] Swain, B., Otu, E. O. (2011). Competitive extraction of lanthanides by solvent extraction using Cyanex 272: Analysis, classification and mechanism. Separation and Purification Technology, 83, 82–90.
  • [23] Saleh, M. I., Bari, M. F., Saad, B. (2002). Solvent extraction of lanthanum(III) from acidic nitrate-acetato medium by Cyanex 272 in toluene. Hydrometallurgy, 63, 75–84.
  • [24] Belova, V. V., Voshkin, A. A., Kholkin, A. I., Paytram, A. K. (2009). Solvent extraction of some lanthanides from chloride and nitrate solutions by binary extractants. Hydrometallurgy, 97, 198–204.
  • [25] Banda, R.; Jeon, H.; Lee, M. (2012). Solvent extraction separation of Pr and Nd from solution containing La using Cyanex 272 and its mixture with other extractants. Separation and Purification Technology, 98, 481–487.
  • [26] El-Nadi (2012). Lanthanum and neodymium from Egyptian monazite: Synergistic extractive separation using organophosphorus reagents. Hydrometallurgy, 119–120, 23–29.
  • [27] Kuang, S., Zhang, Z., Li, Y., Wei, H., Liao, W. (2017). Synergistic extraction and separation of rare earths from chloride medium by the mixture of HEHAPP and D2EHPA. Hydrometallurgy, 174, 78–83.
  • [28] Nguyen, V. N., Nguyen, T. H., Lee, M. S. (2020). Review on the comparison of the chemical reactivity of Cyanex 272, Cyanex 301 and Cyanex 302 for their application to metal separation from acid media. Metals, 10, 1105–1119.
  • [29] Ayanda, O. S., Adekola, F. A., Baba A. A., Ximba, B. J., Fatoki, O. S. (2013). Application of Cyanex® extractant in cobalt/nickel separation process by solvent extraction. International Journal of Physical Sciences, 8(3), 89–97.
  • [30] Kaya, A., Onac, C., Surucu, A., Karapinar, E., Alpoguz, H. K., Tabakci, B. (2014). Preparation of CTA-based polymer inclusion membranes using calyx[4]arene derivative as a carrier for Cr(VI) transport. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 79, 103–111.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7231f1c3-9594-4735-b16c-7ebdbc1720f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.