PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adptive heading control of underactuated unmanned surface vehicle based on improved backpropagation neural network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aiming at the challenges to the accurate and stable heading control of underactuated unmanned surface vehicles arising from the nonlinear interference caused by the overlay and the interaction of multi interference, and also the uncertainties of model parameters, a heading control algorithm for an underactuated unmanned surface vehicle based on an improved backpropagation neural network is proposed. Based on applying optimization theory to realize that the underactuated unmanned surface vehicle tracks the desired yaw angle and maintains it, the improved momentum of weight is combined with an improved tracking differentiator to improve the robustness of the system and the dynamic property of the control. A hyperbolic tangent function is used to establish the nonlinear mappings an approximate method is adopted to summarize the general mathematical expressions, and the gradient descent method is applied to ensure the convergence. The simulation results show that the proposed algorithm has the advantages of strong robustness, strong anti-interference and high control accuracy. Compared with two commonly used heading control algorithms, the accuracy of the heading control in the complex environment of the proposed algorithm is improved by more than 50%.
Rocznik
Tom
Strony
54--64
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan, China
  • Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin, China
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan, China
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
autor
  • China Institute of Marine Technology&Economy, Beijing, China
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan, China
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan, China
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan, China
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
Bibliografia
  • 1. Y. L. Liao, Y. Li, K. W. Pan, et al., ‘Adaptive Multi-body Yawing Filter of Wave Driven Robot with Dynamic Response Amending,’ Ocean Engineering, vol. 242, pp. 1-11(110167), December 2021. doi: 10.1016/j.oceaneng.2021.110167.
  • 2. G. Shao, Y. Ma, R. Malekian, et al., ‘A novel cooperative platform design for coupled USV-UAV systems,’ IEEE Transactions on Industrial Informatics, vol. 15, no. 9, pp. 4913-4922, April 2019. doi: 10.1109/TII.2019.2912024.
  • 3. G. Q. Zhang, W. Yu, W. D. Zhang, et al., ‘Robust adaptive formation control of underactuated surface vehicles with the desired-heading amendment,’ Journal of Marine Science and Technology, vol. 27, pp. 138-150, June 2021. doi: 10.1007/ s00773-021-00820-2.
  • 4. Y. Peng, Y. Yang, J. X. Cui, et al., ‘Development of the USV ‘JingHai-I’ and sea trials in the southern Yellow Sea,’ Ocean Engineering, vol. 131, pp. 186-196, February 2017. doi: 10.1016/j.oceaneng.2016.09.001.
  • 5. Y. L. Liao, Z. H. Jia, W. B. Zhang, et al., ‘Layered berthing method and experiment of unmanned surface vehicle based on multiple constraints analysis,’ Applied Ocean Research, vol. 86, no. 5, pp. 47-60, May 2019. doi: 10.1016/j. apor.2019.02.003.
  • 6. A. Stateczny, P. Burdziakowski, ‘Universal Autonomous Control and Management System for Multipurpose Unmanned Surface Vessel,’ Polish Maritime Research, vol. 26, no. 1, pp. 30-39, March 2019. doi: 10.2478/pomr-2019-0004.
  • 7. J. Kim, ‘Target following and close monitoring using an unmanned surface vehicle,’ IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 11, pp. 4233-4242, November 2020. doi: 10.1109/TSMC.2018.2846602.
  • 8. Y. L. Liao, Q. Q. Jiang, T. P. Du, et al., ‘Redefined output modelfree adaptive control method and unmanned surface vehicle heading control,’ IEEE Journal of Oceanic Engineering, vol. 45, no. 3, pp. 714-723, July 2020. doi: 10.1109/JOE.2019.2896397.
  • 9. J. X. Hu, Y. Ge, X. Zhou, et al., ‘Research on the course control of USV based on improved ADRC,’ Systems Science & Control Engineering, vol. 9, no. 1, pp. 44-51, January 2021. doi: 10.1080/21642583.2020.1865216.
  • 10. M. R. Neria, R. Madonski, S. Shao, et al., ‘Robust tracking in underactuated systems using flatness-based ADRC with cascade observers,’ Journal of Dynamic Systems Measurement and Control - Transactions of the ASME, vol. 142, no. 9, pp. 1-9, September 2020. doi: 10.1115/1.4046799.
  • 11. M. H. Khooban, N. Vafamand, T. Dragicevic, et al., ‘Polynomial fuzzy model-based approach for underactuated surface vessels,’ IET Control Theory and Applications, vol. 12, no. 7, pp. 914-921, February 2018. doi: 10.1049/iet-cta.2017.1106.
  • 12. Y. G. Deng, X. K. Zhang, N. Im, et al., ‘Adaptive fuzzy tracking control for underactuated surface vessels with unmodeled dynamics and input saturation,’ ISA Transactions, vol. 103, pp. 52-62, August 2020. doi: 10.1016/j.isatra.2020.04.010.
  • 13. Z. P. Dong, Y. Liu, H. Wang, et al., ‘Method of cooperative formation control for underactuated USVs based on nonlinear backstepping and cascade system theory,’ Polish Maritime Research, vol. 28, no. 1, pp. 149-162, March 2021. doi: 10.2478/pomr-2021-0014.
  • 14. T. Lin, Y. W. Huang., ‘Course regulation for USV by prescribed performance backstepping control,’ in Proceedings of 2021 Chinese Intelligent Systems Conference, pp. 680-689, January 2022. doi: 10.1007/978-981-16-6328-4_69.
  • 15. N. Wang, H. K. He, ‘Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle,’ IEEE Transactions on Industrial Electronics, vol. 67, no. 11, pp. 9648-9658, November 2020. doi: 10.1109/ tie.2019.2952786.
  • 16. Z. Q. Liu, ‘Adaptive Sliding Mode Control for Ship Autopilot with Speed Keeping,’ Polish Maritime Research, vol. 25, no. 4, pp. 21-29, December 2018. doi: 10.2478/pomr-2018-0128.
  • 17. C. H. Cheng, L. Li, Q. Han, et al., ‘Adaptive sliding mode ADRC for attitude tracking with actuator saturation and uncertainties,’ International Journal of Robotics & Automation, vol. 36, no. 5, pp. 337-344, 2021. doi:10.2316/j.2021.206-0560.
  • 18. S. S. Wang, Y. L. Tuo, ‘Robust Trajectory Tracking Control of Underactuated Surface Vehicles with Prescribed Performance,’ Polish Maritime Research, vol. 27, no. 4, pp. 148-156, December 2020. doi: 10.2478/pomr-2020-0075.
  • 19. H. B. Wang, J. Dong, Z. K. Liu, et al., ‘Control algorithm for trajectory tracking of an underactuated USV under multiple constraints,’ Mathematical Problems in Engineering, vol. 1, no. 8, pp. 1-12, May 2022. doi: 10.1155/2022/5274452.
  • 20. L. G. Li, Z. Y. Pei, J. C. Jin, et al., ‘Control of unmanned surface vehicle along the desired trajectory using improved line of sight and estimated sideslip angle,’ Polish Maritime Research, vol. 28, no. 2, pp. 18-26, June 2021. doi: 10.2478/ pomr-2021-0017.
  • 21. Z. P. Dong, S. J. Qi, M. Yu, et al., ‘An improved dynamic surface sliding mode method for autonomous cooperative formation control of underactuated USVs with complex marine environment disturbances,’ Polish Maritime Research, vol. 29, no. 3, pp. 47-60, December 2022. doi: 10.2478/ pomr-2022-0025.
  • 22. N. K. Gupta, M. K. Kar, A. K. Singh, ‘Design of a 2-DOFPID controller using an improved sine-cosine algorithm for load frequency control of a three-area system with nonlinearities,’ Protection and Control of Modern Power Systems, vol. 7, no. 1, p. 33, September 2022. doi: 10.1186/ s41601-022-00255-w.
  • 23. M. M. Ozyetkin, ‘An approximation method and PID controller tuning for systems having integer order and noninteger order delay,’ Alexandria Engineering Journal, vol. 61, no. 12, pp. 11365-11375, December 2022. doi: 10.1016/j. aej.2022.05.015.
  • 24. R. L. Miao, Z. P. Dong, L. Wan, et al., ‘Heading control system design for a micro-USV based on an adaptive expert S-PID algorithm,’ Polish Maritime Research, vol. 25, no. 2, pp. 6-13, June 2018. doi: 10.2478/pomr-2018-0049.
  • 25. C. Ke, H. F. Chen, ‘Cooperative path planning for air-sea heterogeneous unmanned vehicles using search-and-tracking mission,’ Ocean Engineering, vol. 262, p. 112020, October 2022. doi: 10.1016/j.oceaneng.2022.112020.
  • 26. G. Q. Zhang, S. J. Chu, W. D. Zhang, et al., ‘Adaptive neural fault-tolerant control for USV with the output-based triggering approach,’ IEEE Transactions on Vehicular Technology, vol. 71, no. 7, pp. 6948-6957, July 2022. doi: 10.1109/TVT.2022.3167038.
  • 27. A. G. Garcia, H. Castaneda, L. Garrido, ‘USV path-following control based on deep reinforcement learning and adaptive control,’ in Global Oceans 2020, pp. 1-7, August 2020. doi: 10.1109/IEEECONF38699.2020.9389360.
  • 28. H. N. Esfahani, R. Szlapczynski, ‘Model predictive supertwisting sliding mode control for an autonomous surface vehicle,’ Polish Maritime Research, vol. 26, no. 3, pp. 163-171, October 2019. doi: 10.2478/pomr-2019-0057.
  • 29. J. Y. Zhuang, L. Zhang, Z. H. Qin, et al., ‘Motion Control and Collision Avoidance Algorithms for Unmanned Surface Vehicle Swarm in Practical Maritime Environment,’ Polish Maritime Research, vol. 26, no. 1, pp. 163-171, March 2019. doi: 10.2478/pomr-2019-0012.
  • 30. K. S. Kula, ‘Automatic Control of Ship Motion Conducting Search in Open Waters,’ Polish Maritime Research, vol. 27, no. 4, pp. 157-169, December 2020. doi: 10.2478/ pomr-2020-0076.
  • 31. Q. Zhang, Z. Y. Ding, M. J. Zhang, ‘Adaptive Self-Regulation PID Control of Course-Keeping for Ships,’ Polish Maritime Research, vol. 27, no. 1, pp. 39-45, March 2020. doi: 10.2478/ pomr-2020-0004.
  • 32. S. S. Wang, M. Y. Fu, Y. H. Wang, ‘Robust adaptive steering control for unmanned surface vehicle with unknown control direction and input saturation,’ International Journal of Adaptive Control and Signal Processing, vol. 33, no. 7, pp. 1212-1224, 2023. doi: 10.32604/iasc.2023.027614.
  • 33. L. Liu, Y. S. Fan, ‘Active disturbance rejection course control for USV based on RBF neural network,’ in 2020 39th Chinese Control Conference (CCC), pp. 3344-3351, July 2020. doi: 10.23919/CCC50068.2020.9188760.
  • 34. G. Yi, Z. Liu, J. Q. Zhang, et al., ‘Research on underactuated USV path following algorithm,’ in 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 2141-2145, June 2020. doi: 10.1109/ ITNEC48623.2020.9085222.
  • 35. R. Farkh, K. Aljaloud, ‘Vision navigation based PID control for line tracking robot,’ Intelligent Automation & Soft Computing, vol. 35, no. 1, pp. 901-911, 2023. doi: 10.32604/ iasc.2023.027614.
  • 36. B. Du, B. Lin, C. M. Zhang, et al., ‘Safe deep reinforcement learning-based adaptive control for USV interception mission,’ Ocean Engineering, vol. 246, p. 110477, February 2022. doi: 10.1016/j.oceaneng.2021.110477.
  • 37. T. Asfihani, D. K. Arif, Subchan, et al., ‘Comparison of LQG and adaptive PID controller for USV heading control,’ Journal of Physics: Conference Series, vol. 1218, p. 012058, May 2019. doi: 10.1088/1742-6596/1218/1/012058.
  • 38. S. T. Wang, X. H. Yin, P. Li, et al., ‘Consensus control of multiagent systems with deception attacks using event-triggered adaptive cognitive control,’ Communications in Nonlinear Science and Numerical Simulation, vol. 114, p. 106675, November 2022. doi: 10.1016/j.cnsns.2022.106675.
  • 39. Y. J. Zhao, Y. Ma, S. L. Hu, ‘USV formation and pathfollowing control via deep reinforcement learning with random braking,’ IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 12, pp. 5468-5478, April 2021. doi: 10.1109/TNNLS.2021.3068762.
  • 40. S. Xie, X. M. Chu, C. G. Liu, ‘Parameter identification of ship motion model based on multi-innovation methods,’ Journal of Marine Science and Technology, vol. 25, pp. 162-184, March 2022. doi: 10.1007/s00773-019-00639-y.
  • 41. Y. T. Gui, D. Q. Li, R. Y. Fang, ‘A fast adaptive algorithm for training deep neural networks,’ Applied Intelligence, vol. 53, no. 12, pp. 1-10, June 2022. doi: 10.1007/s10489-022-03629-7.
  • 42. Y. H. Kang, Y. Kuang, J. Cheng, et al., ‘Robust leaderless timevarying formation control for unmanned aerial vehicle swarm system with Lipschitz nonlinear dynamics and directed switching topologies,’ Chinese Journal of Aeronautics, vol. 35, no. 1, pp. 124-136, July 2021. doi: 10.1016/j.cja.2021.05.017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72315262-3f9b-433b-9906-50c876ad131a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.