PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Legal barriers to the development of onshore wind power plants and the design of wind turbine tower pile foundation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Bariery prawne w rozwoju lądowej energetyki wiatrowej a projektowanie fundamentów wież turbin wiatrowych
Języki publikacji
EN
Abstrakty
EN
Even the best project of a wind power plant (WPP) can fail if there are not favourable legal regulations for its completion. Most of the research has dealt with identification of various obstacles to implement WPP (political, social, legal, environmental). Analyses of legal barriers (LBs) have been usually made at a high degree of generality. This paper offers a thorough overview of LBs for localization of WPPs in Poland. This is the country where restrictive regulations have blocked the possibility of implementing such projects in many areas. Unfriendly law may persuade investors to choose worse wind turbines foundation conditions. In our research we focus on a problem little dealt in scientific studies, i.e. on the localization of WPP in difficult geotechnical conditions. The article presents the analytical engineering method, which includes the mutual influence between foundation piles in carrying on the construction load on a subsoil. The paper presents the geotechnical parameters responsible for calculation outcomes, the theoretical basis of the curve analysis method of settlement of a single pile and of the calculation of piles settlement working in a group and fastened with a stiff head. It also shows the effect of pile arrangement in a foundation and a load distribution of in-dividual piles, as well as a settlement and leaning of foundation of wind power turbine towers. The method enables a more precise, safer and optimal design of a wind turbine foundation.
PL
Nawet najlepiej przygotowany projekt elektrowni wiatrowej może zakończyć się niepowodzeniem, jeżeli zabraknie korzystnych przepisów prawnych dla jego realizacji. Problematyka rozwoju energetyki wiatrowej jest współcześnie niezwykle ważna. Decydujący udział w dynamice tego rozwoju mają rozwiązania systemowe, w tym również rozwiązania prawne. Od wielu lat toczy się dyskusja dotycząca strategii rozwoju polityki energetycznej uwzględniającej wykorzystanie odnawialnych źródeł energii. W tym kontekście prowadzone są również badania i analizy skoncentrowane na uwarunkowaniach rozwoju energetyki wiatrowej. Spora część z nich identyfikuje różne przeszkody we wdrażaniu i rozwoju energetyki wiatrowej (polityczne, społeczne, prawne, środowiskowe). Analizy barier prawnych są zazwyczaj dokonywane na wysokim poziomie ogólności. Niniejszy artykuł zawiera szczegółowy przegląd barier prawnych mających wpływ na lokalizację wież elektrowni wiatrowych w Polsce. Polska to kraj, w którym restrykcyjne przepisy zablokowały możliwość realizacji takich projektów lub skłaniają inwestorów do wyboru lokalizacji, na których występują niekorzystne warunki posadowienia. W naszych badaniach skupiamy si ę na problemie projektowych konsekwencji lokalizacji elektrowni wiatrowych w trudnych warunkach geotechnicznych. W artykule przedstawiono metodę obliczeniową proponowaną w analizie statycznej fundamentów palowych wież turbin wiatrowych, która uwzględnia wzajemny wpływ pali fundamentowych na przenoszenie obciążeń na podłoże gruntowe. W pracy przedstawiono parametry geotechniczne odpowiedzialne za wyniki obliczeń, teoretyczne podstawy metody analizy osiadania pala pojedynczego oraz obliczania osiadania pali pracujących w grupie i zwieńczonych sztywną głowicą żelbetową. Na podstawie przykładowych obliczeń przedstawiono wpływ rozmieszczenia pali w fundamencie na rozkład obciążenia poszczególnych pali, a także osiadanie i obrót fundamentu wież turbin wiatrowych. Przedstawiona metoda umożliwia dokładniejsze, bezpieczniejsze i bardziej optymalne projektowanie fundamentu lądowej turbiny wiatrowej w niekorzystnych warunkach ich lokalizacji.
Rocznik
Strony
53--71
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • University of Warmia and Mazury, Faculty of Geongineering, Prawochenskiego str. 15, 10-720 Olsztyn, Poland
  • University of Warmia and Mazury, Faculty of Geongineering, Prawochenskiego str. 15, 10-720 Olsztyn, Poland
Bibliografia
  • [1] Renewables 2021 Global Status Report. Paris, France: REN21 Secretariat, 2020.
  • [2] Directive 2009/28/WE of the European Parliament and of the Council of 23 April 2009 on promotion of using energy from renewable sources repealing Directives 2001/77/EC and 2003/30/EC (OJ UE L 140/16, 5.6.2009).
  • [3] Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast) (OJ L 328/82, 21.12.2018).
  • [4] The Energy Policy of Poland until 2040. [Online]. Available: https://www.gov.pl/web/climate/energy-policy-ofpoland-until-2040-epp2040. [Accessed: 11. Apr. 2022].
  • [5] A. Tajduś and S. Tokarski, “Risks related to energy policy of Poland until 2040 (EPP 2040)”, Archives of Mining Sciences, vol. 65, no. 4, pp. 877–899, 2020, doi: 10.24425/ams.2020.135183
  • [6] A. Zaremba, “Subsoil modification in the light of wind-turbines foundation (part I)”, Geoengineering Roads Bridges Tunnels, no. 4, pp. 42–48, 2013 (in Polish).
  • [7] P. Włoch, “Wind energy barriers”, Energia – Gigawat, no. 12, 2009 (in Polish).
  • [8] M. Przybylska, “Legal considerations for locating wind power plants – de lege lata remarks after the Act on investments into wind power plants has entered into force”, Territorial Self-Government, no. 11, pp. 23–32, 2017 (in Polish).
  • [9] E. Zębek and M. Szramka, “Wind farms locations in the light of current legal regulations in Poland”, Journal of Modern Science, no. 2, pp. 299–321, 2013 (in Polish).
  • [10] The State of Wind Energy in Poland in 2016. The Polish Wind Energy Association, 2017.
  • [11] P. Hektus, “Spatial condition of the location of wind power stations in the Greater Poland voivodship”, Regional Development and Regional Policy, no. 40, pp. 203–213, 2017 (in Polish).
  • [12] P. Hektus, “Factors affecting the location of wind power plants in Poland”, Ph.D. thesis, Adam Mickiewicz University in Poznań, Faculty of Geographical and Geological Sciences, 2020 (in Polish).
  • [13] A. Gielnik and R. Rosicki, “Wind power engineering in Poland – opportunities for development and threats”, in Energy safety – fossil resources vs alternative energy sources, P. Kwiatkiewicz, Ed. University of Security in Poznań, 2013, pp. 191–205, (in Polish).
  • [14] M. Stryjecki, K. Mielniczuk, and J. Biegaj, Guide to location and environmental procedures for wind farms in Polish offshore areas. Warsaw: Foundation for Sustainable Electrical Engineering, 2011 (in Polish).
  • [15] W. Tarełko, “Offshore Wind Farms: Foundation of Wind Turbines”, Marine Engineering and Geotechnics, no. 6, pp. 888–897, 2015 (in Polish).
  • [16] K. Pronińska and K. Księżopolski, “Baltic Offshore Wind Energy Development – Poland’s Public Policy Tools Analysis and the Geostrategic Implications”, Energies, vol. 14, no. 16, art. no. 4883, 2021, doi: 10.3390/en14164883.
  • [17] GWEC. Global Wind Energy Council, Global Offshore Wind Report 2020. Brussels, 2020.
  • [18] T. Pardela, “Foundation of wind power plants with a capacity of 2.0-2.5 MW on low ground capacity”, Modern Engineering Construction, no. 3, pp. 70–73, 2012 (in Polish).
  • [19] G. Sobieski, D. Stankiewicz, A. Zaremba, and D. Dalak, “Foundation of wind turbines in the context of the new RES support system”, Fuels and Power Engineering, no. 1, pp. 60–63, 2016 (in Polish).
  • [20] C. Lavanya and N.D. Kumar, “Foundation Types for Land and Offshore Sustainable Wind Energy Turbine Towers”, in Proceedings 2nd International Conference on Design and Manufacturing Aspects for Sustainable Energy, ICMED 2020, E3S Web of Conferences, vol. 184, art. no. 01094, 2020, doi: 10.1051/e3sconf/202018401094.
  • [21] A. Zhussupbekov, R. Lukpanov, D. Orazova, and Z. Sapenova, “Design of Foundations for Wind Turbine with analysis by Finite Element Method”, in 13th Baltic Sea Geotechnical Conference proceedings. Lithuania, 2016, pp. 196–200, doi: 10.3846/13bsgc.2016.029.
  • [22] L. Wang, R. Zhong, and L. Liu, “Resonance characteristics of onshore wind turbine tower structure considering the impedance of piled foundations”, Arabian Journal of Geosciences, vol. 13, no. 4, art. no. 163, 2020, doi: 10.1007/s12517-020-5163-9.
  • [23] N. Ravichandran, S. Shrestha, and K. Piratla, “Robust design and optimization procedure for piled-raft foundation to support tall wind turbine in clay and sand”, Soils and Foundations, vol. 58, no. 3, pp. 744–755, 2018, doi: 10.1016/j.sandf.2018.02.027.
  • [24] J. Rybak, “Foundations of wind power plants – challenges in designing and execution of construction work”, Journal of Physics: Conference Series, vol. 1706, art. no. 012130, 2020, doi: 10.1088/1742-6596/1706/1/012130.
  • [25] E.K. Zavadskas, J. Antuchevičiene, and O. Kaplinski, “Multi-criteria decision making in civil engineering, Part 1 – A state-of-the-art survey”, Engineering Structures and Technologies, vol. 7, no. 3, pp. 103–113, 2015, doi: 10.3846/2029882X.2015.1143204.
  • [26] P. Iwicki and J. Przewłócki, “Short Review And 3-D Fem Analysis Of Basic Types Of Foundation For Offshore Wind Turbines”, Polish Maritime Research, vol. 27, no. 3, pp. 31–39, 2020, doi: 10.2478/pomr-2020-0044.
  • [27] G. Berent-Kowalska, J. Kacprowska, I. Moskal, and A. Jurgaś, Statistical Information and Elaborations. Energy from renewable sources in 2015. Warsaw: Central Statistical Office, 2016.
  • [28] G. Berent-Kowalska, J. Kacprowska, I. Moskal, D. Piwko, A. Jurgaś, Statistical Information and Elaborations. Energy from renewable sources in 2016. Warsaw: Central Statistical Office, 2017.
  • [29] Energy from renewable sources in 2017. Signal Information. Warsaw: Central Statistical Office, 2018.
  • [30] Energy from renewable sources in 2018. Signal Information. Warsaw: Central Statistical Office, 2019.
  • [31] Energy from renewable sources in 2019. Signal Information. Warsaw: Central Statistical Office, 2020.
  • [32] The Parliamentary Act of May 20, 2016 on wind farm investments (the "Wind Farm Act").
  • [33] The Parliamentary Act of July 7, 1994 on building law.
  • [34] The Parliamentary act of January 12, 1991 on taxes and local payments.
  • [35] The Parliamentary act of March 27, 2004 on local land management.
  • [36] The Parliamentary act of October 3, 2008 on access to information about the environment and its protection, social participation in environment protection and in assessment of an impact on the environment
  • [37] The Parliamentary act from April 16, 2004 on environment protection.
  • [38] The Parliamentary act of February 3, 1995 on protection of agricultural and sylvan land.
  • [39] The decree of the Minister of the Environment from November 4, 2008 on requirements for making measurements of the amount of emission and of water taken.
  • [40] P. Śleszyński, A. Deręgowska, Ł. Kubiak, P. Sudra, and B. Zielińska, Analysis of the state and conditions of planning work in communes in 2017. Institute of Geography and Spatial Development of the Polish Academy of Sciences. [Online]. Available: www.igipz.pan.pl/aktualnosc/items/analiza-stanu-2017.html. [Accessed 11. Apr. 2022].
  • [41] F. DallaLonga, T. Kober, J. Badger, P. Volker, C. Hoyer-Klick, I. Hidalgo, H. Medarac, W. Nijs, S. Politis, D. Tarvydas, and A. Zucker, Wind potentials for EU and neighbouring countries. Input datasets for the JRC-EU-TIMES Model EUR 29083 EN. Publications Office of the European Union, 2018, doi: 10.2760/041705.
  • [42] Judgment of the Court (Fourth Chamber), 28 May 2020, The case of Eco-Wind Construction, C-727/17 – ECO-WIND Construction.
  • [43] J.H. Atkinson, “Non-linear soil stiffness in routine design”, Geotechnique, vol. 50, no. 5, pp. 487–508, 2000, doi: 10.1680/geot.2000.50.5.487.
  • [44] J.A. Diaz-Rodriguez and J.A. Lopez-Molina, “Strain thresholds in soil dynamics”, presented at 14-th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China.
  • [45] M.J. Lipiński, M.K. Wdowska, and A. Wudzka, “Capability of triaxial apparatus with respect to evaluation of nonlinearity of soil stiffness”, Archives of Civil Engineering, vol. 66, no. 1, pp. 69–80, 2020, doi: 10.24425/ace.2020.131775.
  • [46] P. Srokosz, I. Dyka, and M. Bujko, “Determination of Shear Modulus of Soil in the RC/TS Apparatus for Designing Offshore Wind Power Plant Foundations”, Polish Maritime Research, vol. 25, no. 3, pp. 69–83, 2018, doi: 10.2478/pomr-2018-0098.
  • [47] Y.K. Chow, “Analysis of Vertically Loaded Pile Groups”, International Journal for Numerical and Analytical Methods in Geomechanics, vol. 10, no. 1, pp. 59–72, 1986, doi: 10.1002/nag.1610100105.
  • [48] K. Gwizdała and I. Dyka, “Estimation of settlements of piles in group”, in Ninth International Conference on Piling and Deep Foundations Proceedings, Nice, 3-5 June 2002. France, pp. 257–262.
  • [49] J.M. Duncan and C.Y. Chang, “Non-linear analysis of stress and strain in soils”, Journal of Soil Mechanics and Foundations Division, vol. 96, no. 5, pp. 1629–1653, 1970.
  • [50] L.M. Kraft, R.P. Ray, and T. Kagawa, “Theoretical t-z curves”, Journal of the Geotechnical Engineering Division, vol. 107, no. GT11, pp. 1543–1561, 1981.
  • [51] W. F. Van Impe and Y. De Clercq, “A piled raft interaction model”, presented at Fifth International Conference and Exhibition on Piling and Deep Foundations Proceedings – DFI’94, Bruges, Belgium, 1994.
  • [52] F. Kuwabara, “Settlement behavior of non-linear soil around single piles subjected to vertical loads”, Soils and Foundations, vol. 31, no. 1, pp. 39–46, 1991, doi: 10.3208/sandf1972.31.39.
  • [53] M. Fahey and J. P. Carter, “A finite element study of the pressuremeter test in sand using nonlinear elastic plastic model”, Canadian Geotechnical Journal, vol. 30, no. 2, pp. 348–362, 1993, doi: 10.1139/t93-029.
  • [54] M. B. Darendeli, “Development of a new family of normalized modulus reduction and material damping curves”, PhD thesis, University of Texas at Austin, USA, 2001.
  • [55] I. Dyka, “Use of the laboratory tests of soil modulus in modelling pile behavior”, Studia Geotechnica et Mechanica, vol. 34, no. 3, pp. 53–61, 2012, doi: 10.2478/sgm031204.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7230676f-4b13-4964-a551-e4fd6621d6c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.