PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Tracing the latest Jurassic–earliest Cretaceous paleoenvironment evolution in swell carbonate facies:a case study of the High-Tatric succession (Central Western Carpathians, Tatra Mts, Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an interpretation of sedimentologic, paleomagnetic, and geochemical data collected in the Upper Kimmeridgian–Valanginian carbonates of the Giewont series (Giewont and Mały Giewont sections, High-Tatric succession, Western Tatra Mountains, Poland). The studied succession provides insight into the sedimentary conditions prevailing in the South Tatric Ridge (Tatricum), a submarine elevation located between the Zliechov Basin (Fatricum) and the Vahic (=South Penninic) Ocean. The sedimentary sequence includes micrites, pseudonodular limestones, cyanoid packstones, lithoclastic packstone, and encrinites. The results are discussed with regards to their significance for detrital input, paleoclimate, and paleoproductivity, which in turn are considered in the context of both local and regional paleoenvironmental trends and events. The greatest depositional depths during the latest Kimmeridgian–earliest Tithonian are documented by the occurrence of pseudonodular limestones. A Tithonian shallowing trend is demonstrated via the increasing size and roundness of cyanoids, while the final (?)emergence and erosion in the South Tatric Ridge is documented by earliest Cretaceous disconformities. This process might have been related to both falling sea-level during the major eustatic regressive cycle and tectonic uplift caused by the mutually related (re)activation in the Neotethyan Collision Belt and rifting in the Ligurian-Penninic-Vahic Oceans. The highest lithogenic influx (although still low; max 0.5% of Al content) during the Late Kimmeridgian is considered as associated with relatively humid climate conditions, whereas a subsequent decreasing trend is thought to result from aridification during the latest Kimmeridgian–earliest Tithonian. Ultimately, deposition in the High-Tatric zone was affected by both large-scale environmental perturbations characteristic of the latest Jurassic (climate changes, variations in sea-water pH, monsoonal upwelling, lithogenic input, etc.), as well as local sedimentary controls, predominantly the oxygenation state of bottom waters and tectonic movements.
Rocznik
Strony
741--772
Opis fizyczny
Bibliogr. 148 poz., rys., wykr., tab
Twórcy
  • University of Warsaw, Faculty of Geology
  • Polish Geological Institute-National Research Institute
  • Polish Geological Institute-National Research Institute
Bibliografia
  • 1. Abbink, O., Targarona, J., Brinkhuis, H. and Visscher, H. 2001. Late Jurassic to earliest Cretaceous palaeoclimatic evolution of the southern North Sea. Global and Planetary Change, 30, 231–256.
  • 2. Algeo, T.J. and Li, C. 2020. Redox classification and calibration of redox thresholds in sedimentary systems. Geochimica et Cosmochimica Acta, 287, 8–26.
  • 3. Algeo, T.J. and Liu, J. 2020. A re-assessment of elemental proxies for paleoredox analysis. Chemical Geology, 540, 119549.
  • 4. Bassetti, M.-A., Berné, S., Sicre, M.-A., Dennielou, B., Alonso, Y., Buscail, R., Jalali, B., Hebert, B. and Menniti, C. 2016. Holocene hydrological changes in the Rhône River (NW Mediterranean) as recorded in the marine mud belt. Climate of the Past, 12, 1539–1553.
  • 5. Baumgartner, P.O. 2013. Mesozoic radiolarites – Accumulation as a function of sea surface fertility on Tethyan margins and in ocean basins. Sedimentology, 60, 292–318.
  • 6. Bąk, K. and Bąk, M. 2013. Foraminiferal and radiolarian biostratigraphy of the youngest (Late Albian through Late Cenomanian) sediments of the Tatra massif, Central Western Carpathians. Acta Geologica Polonica, 63, 223–237.
  • 7. Bąk, M. and Bąk, K. 2018. Palaeoceanographic regime during the Oxfordian–Kimmeridgian in the Western Tethys recorded by radiolarian assemblages in the siliceous sediments of the Pieniny Klippen Belt, Carpathians. Geological Journal, 54, 3362–3375.
  • 8. Berner, R.A. 1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48, 605–615.
  • 9. Birkenmajer, K. 1963. Stratigraphy and palaeogeography of the Czorsztyn series (Pieniny Klippen Belt, Carpathians) in Poland. Studia Geologica Polonia, 10, 1–380.
  • 10. Birkenmajer, K. 1975. Tectonic control of sedimentation at the Jurassic–Cretaceous boundary in the Pieniny Klippen Belt, Carpathians. Mémoires du Bureau de Recherches Géologiques et Minières, 86, 294–299.
  • 11. Birkenmajer K. 1977. Jurassic and Cretaceous lithostratigraphic units of the Pieniny Klippen Belt, Carpathians, Poland. Studia Geologica Polonica, 45, 1–158.
  • 12. Birkenmajer, K. 1986. Stages of structural evolution of the Pieniny Klippen Belt, Carpathians. Studia Geoogica Polonica, 88, 7–32.
  • 13. Bond, D.P.G., Zatoń, M., Wignall, P.B. and Marynowski, L. 2013 Evidence for shallow-water ‘Upper Kellwasser’ anoxia in the Frasnian–Famennian reefs of Alberta, Canada. Lethaia, 46, 355–368.
  • 14. Bover-Arnal, T. and Strasser, A. 2013. Relative sea-level change, climate, and sequence boundaries: insights from the Kimmeridgian to Berriasian platform carbonates of Mount Saléve (E France). International Journal of Earth Sciences, 102, 493–515.
  • 15. Brandano, M., Westphal, H., Mateu-Vicens, G., Preto, N. and Obrador, A. 2016. Ancient upwelling record in a phosphate hardground (Tortonian of Menorca, Balearic Islands, Spain). Marine and Petroleum Geology, 78, 593–605.
  • 16. Bureau Veritas Minerals Schedule of Service & Fees. 2020. https://commodities.bureauveritas.com/sites/g/files/zyp-fnx241/files/media/document/Metals%20Minerals%20and%20Environmental_2020_Fee_%20Schedule_MIN-ING_CAD.pdf
  • 17. Calvert, S.E. and Pedersen, T.F. 2007. Elemental Proxies for Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments: Interpretation and Application. Developments in Marine Geology, 1, 567–644.
  • 18. Casellato, C.E. 2009. Causes and consequences of calcareous nannoplankton evolution in the Late Jurassic: implications for biogeochronology, biocalcification and ocean chemistry. Ph.D. Thesis, Universita degli Studi di Milano, Milano, 122 pp.
  • 19. Casellato, C.E. and Erba, E. 2021. Reliability of calcareous nannofossil events in the Tithonian–early Berriasian time interval: Implifications for a revised high resolution zonation. Cretaceous Research, 117, 104611.
  • 20. Cecca, F., Fourcade, E. and Azéma, J. 1992. The disappearance of the “Ammonitico Rosso”. Palaeogeography, Palaeoclimatology, Palaeoecology, 99, 55–70.
  • 21. Charbonnier, G. Duchamp-Alphonse, S., Deconinck, J.-F., Adatte, T., Spangenberg, J.E., Colin, C. and Föllmi, K.B. (2020) A global palaeoclimatic reconstruction for the Valanginian based on clay mineralogical and geochemical data. Earth-Science Reviews, 202, 103092.
  • 22. Cramer, B.D. and Jarvis, I. 2020. Carbon Isotope Stratigraphy. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M. (Eds), The Geologic Time Scale 2020, 955–1022. Elsevier; Amsterdam, London, Cambridge.
  • 23. Csontos, L. and Vörös, A. 2004. Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 1–56.
  • 24. Da Silva, A.C., Whalen, M.T., Hladil, J., Chadimova, L., Chen, D., Spassov, S., Boulvain, F. and Devleeschouver, X. 2015. Magnetic susceptibility application: a window onto ancient environments and climatic variations: foreword. Geological Society, London, Special Publications, 414, 1–13.
  • 25. De Wever, P., Dumitrica, P., Caulet, J.P., Nigrini, C. and Caridroit, M. 2001. Radiolarians in the Sedimentary Record, 533 pp. Gordon and Breach Science Publications, London.
  • 26. De Wever, P., O’Dogherty, L. and Goričan, Š. 2014. Monsoon as a cause of radiolarite in the Tethyan realm. Comptes Rendus Geoscience, 346, 287–297.
  • 27. Dearing, J.A., Dann, R.J.L., Hay, K., Lees, J.A., Loveland, P.J., Maher, B.A. and O’Grady, K. 1996. Frequency-dependent susceptibility measurements of environmental materials. Geophysics Journal International, 124, 228–240.
  • 28. Deconinck, J.-F., Chamley, H., Debrabant, P. and Colbeaux, J.P. 1983. Le Boulonnais au Jurassique supérieur: données de la minéralogie des argiles et de la géochimie. Annales de la Société Géologique du Nord, 102, 145–152.
  • 29. Diaz, M.R. and Eberli, G.P. 2018. Decoding the mechanism of formation in marine ooids: A review. Earth-Science Reviews, 190, 536–556.
  • 30. Diester-Haass, L., Robert, C. and Chamley, H. 1993. Paleoceanographic and paleoclimatic evolution in the Weddell Sea (Antarctica) during the middle Eocene–late Oligocene, from a coarser sediment fraction and clay mineral data (ODP Site 689). Marine Geology, 114, 233–250.
  • 31. Duchamp-Alphonse, S., Fiet, N., Adatte, T. and Pagel, M. 2011. Climate and sea-level variations along the northwestern Tethyan margin during the Valanginian C-isotope excursion: Mineralogical evidence from the Vocontian Basin (SE France). Palaeogeography, Palaeoclimatology, Palaeoecology, 302, 243–254.
  • 32. Erba, E. 1994. Nannofossils and superplumes, the early Aptian “nannoconid” crisis. Paleoceanography, 9, 483–501.
  • 33. Falkowski, P. 2012. The power of plankton. Nature, 483, 17–20. Flügel, E. 2010. Microfacies of Carbonate Rocks. Analysis, Interpretation and Application, 984 pp. Springer; Heidelberg, Dordrecht, London, New York.
  • 34. Fodor, L., Sztanó, O. and Kövér, S. 2013. Mesozoic deformation of the northern Transdanubian Range (Gerecse and Vértes Hills). Acta Mineralogica-Petrographica, 31, 1–52.
  • 35. Föllmi, K.B. 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research, 35, 230–257.
  • 36. Gawlick, H.-J. and Schlagintweit, F. 2006. Berriasian drowning of the Plassen carbonate platform at the type-locality and its bearing on the early Eoalpine orogenic dynamics in the Northern Calcareous Alps (Austria). International Journal of Earth Sciences, 95, 451–462.
  • 37. Gawlick, H.-J., Frisch, W., Vecsei, A. Steiger, T. and Böhm, F. 1999. The change from rifting to thrusting in the Northern Calcareous Alps as recorded in Jurassic sediments. Geologische Rundschau, 87, 644–657.
  • 38. Gawlick, H.-J., Aubrecht, R., Schlagintweit, F., Missoni, S. and Plašienka, D. 2015. Ophiolitic detritus in Kimmeridgian resedimented limestones and is provenance from an eroded obducted ophiolitic nappe stack south of the Northern Calcareous Alps (Austria). Geologica Carpathica, 66, 473–487.
  • 39. Giraud, F., Mattioli, E., López-Otálvaro, G., Lécuyer, C., Suchéras-Marx, B., Marineau, F., Arnaud-Godet, F. and de Kænel, E. 2016. Deciphering processes controlling mid-Jurassic coccolith turnover. Marine Micropaleontology, 125, 36–50.
  • 40. Golonka, J. and Krobicki, M. 2001. Upwelling regime in the Carpathian Tethys: a Jurassic–Cretaceous palaeogeographic and plaeoclimatic perspective. Geological Quarterly, 45, 15–32.
  • 41. Goričan, Š, Žibret, L., Košir, A., Kukoč, D. and Horvat, A. 2018 Stratigraphic correlation and structural position of Lower Cretaceous flysh-type deposits in the eastern Southern Alps (NW Slovenia). International Journal of Earth Sciences, 107, 2933–2953.
  • 42. Grabowski, J. and Sobień, K. 2015. Variation in clastic input in the Berriasian of the Lower Sub-Tatric (Krížna) succession in the Tatra Mountains (Central Western Carpathians, Poland): data from magnetic susceptibility and inorganic geochemistry. Annales Societatis Geologorum Poloniae, 85, 139–150.
  • 43. Grabowski, J., Michalík, J., Szaniawski, R. and Grotek, I. 2009. Sythrusting remagnetization of the Krížna nappe: high resolution palaeo- and rock magnetic study in the Strážovce section, Strážovské vrchy Mts, Central West Carpathians (Slovakia). Acta Geologica Polonica, 59, 137–155.
  • 44. Grabowski, J., Schnyder, J., Sobień, K., Koptíkova, L., Krzemiński, L., Pszczółkowski, A., Hejnar, J. and Schnabl, P. 2013. Magnetic susceptibility and spectral gamma logs in the Tithonian–Berriasian pelagic carbonates in the Tatra Mts (Western Carpathians, Poland): Palaeoenvironmental changes at the Jurassic/Cretaceous boundary. Cretaceous Research, 43, 1–17.
  • 45. Grabowski, J., Lakova, I., Petrova, S., Stoykova, K., Ivanova, D., Wójcik-Tabol, P., Sobień, K. and Schnabl, P. 2016. Paleomagnetism and integrated stratigraphy of the Upper Berriasian hemipelagic succession in the Barlya section Western Balkan, Bulgaria: Implications for lithogenic input and paleoredox variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 156–177.
  • 46. Grabowski, J., Haas, J., Stoykova, K., Wierzbowski, H. and Brański, P. 2017. Environmental changes around the Jurassic/Cretaceous transition: New nannofossil, chemostratigraphic and stable isotope data from the Lókút section (Transdanubian Range, Hungary). Sedimentary Geology, 360, 54–72.
  • 47. Grabowski, J., Bakhmutov, V., Kdýr, Š., Krobicki, M., Pruner, P., Rehákova, D., Schnabl, P., Stoykova, K. and Wierzbowski, H. 2019. Integrated stratigraphy and palaeoenvironmental interpretation of the Upper Kimmeridgian to Lower Berriasian pelagic sequences of the Velykyi Kamianets section (Pieniny Klippen Belt, Ukraine). Palaeogeography, Palaeoclimatology, Palaeoecology, 532, 109216.
  • 48. Grabowski, J., Chmielewski, A., Ploch, I., Rogov, M., Smoleń, J., Wójcik-Tabol, P., Leszczyński, K. and Maj-Szeliga, K. 2021a. Palaeoclimatic changes and inter-regional correlations in the Jurassic/Cretaceous boundary interval of the Polish Basin: portable XRF and magnetic susceptibility study. Newsletters on Stratigraphy, 54, 123–158.
  • 49. Grabowski, J., Stoykova, K., Wierzbowski, H. and Wójcik-Tabol, P. 2021b. Upper Berriasian chemostratigraphy, clay minerals and calcareous nannofossils of the Barlya section (Western Balkan, Bulgaria): implications for paleoclimate and productivity changes, and stratigraphic correlations across the Alpine Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 567, 110252.
  • 50. Grabowski, J., Bąk, K., Bąk, M., Krobicki, M., Lodowski, D., Uchman, A., Golonka, J., Górny, Z., Hejnar, J., Iwańczuk, J., Olszewska, B., Oszczypko, N., Salata, D., Wierzbowski, A. and Wójcik-Tabol, P. 2022. From shallow to deep marine depositional environments of the Cretaceous northwestern Tethys – a record of alpine system differentiation in the Polish Carpathians. In: Walaszczyk, I.P. and Todes, J. (eds) Cretaceous of Poland: Field Guides, 11th International Creta-ceous Synposium, Warsaw, Poland, 2022. 297–362, Faculty of Geology, University of Warsaw.
  • 51. Haas, J. and Péró, C. 2004. Mesozoic evolution of the Tisza Megaunit. International Journal of Earth Sciences, 93, 297–313.
  • 52. Hallam, A. 2001. A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeography, Palaeoclimatology, Palaeoecology, 167, 23–37.
  • 53. Haq, B.U. 2014. Cretaceous eustasy revisited. Global and Plane tary Change, 113, 44–58.
  • 54. Haq, B.U. 2018. Jurassic sea-level variations: A reappraisal. GSA Today, 28, 4–10.
  • 55. Hardenbol, J., Thierry, J., Harley, M.B., Jacquin, Th., de Graciansky, P.-C. and Vail, P.R. 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. Appendix. SEPM Special Publication, 160, 763–786.
  • 56. Häusler, H., Plašienka, D. and Polák, M. 1993. Comparison of Mesozoic successions of the Central Eastern Alps and the Central Western Carpathians. Jahrbuch der Geologischen Bundesanstalt, 136, 715–739.
  • 57. Hesselbo, S.P., Deconinck, J.-F., Huggett, J.M. and Morgans-Bell, H.S. 2009. Late Jurassic palaeocolimatic change from clay mineralogy and gamma-ray spectrometry of the Kimmeridge Clay, Dorset, UK. Journal of the Geological Society, London, 166, 1123–1133.
  • 58. van der Hoeven, I.C., Verreussel, R.M.C.H., Riboulleau, A., Tribovillard, N. and van de Schootbrugge, B. (2022) Climate-controlled organic matter accumulation as recorded in the Upper Jurassic Argiles de Châtillon Formation, a shallow-marine counterpart of the Kimmeridge Clay Formation. Geological Magazine, 160: 579–600.
  • 59. Hotinski, R.M. and Toggweiler, J.R. 2003. Impact of a Tethyan circumglobal passage on ocean heat transport and “equable” climates. Paleoceanography, 18, 1–15.
  • 60. Jach, R. and Rehákova, D. 2019. Middle to Late Jurassic carbonate-biosiliceous sedimentation and palaeoenvironment in the Tethyan Fatricum domain, Krížna Nappe, Tatra Mts, Western Carpathians. Annales Societatis Geologorum Poloniae, 89, 1–46.
  • 61. Jach, R., Rehákova, D. and Uchman, A. 2012. Biostratigraphy and palaeoenvironment of the Kimmeridgian–Lower Tithonian pelagic deposits of the Krížna Nappe, Lejowa Valley, Tatra Mts. (southern Poland). Geological Quarterly, 56, 773–788.
  • 62. Jach, R., Djerić, N., Goričan, Š. and Rehákova, D. 2014. Integrated stratigraphy of the Middle–Upper Jurassic of the Kríž na Nappe, Tatra Mountains. Annales Societatis Geologorum Poloniae, 84, 1–33.
  • 63. Jackson, M. and Swanson-Hysell, N.L. 2012. Rock magnetism of remagnetized carbonate rocks: another look. Geological Society, London, Special Publications, 371, 229–251.
  • 64. Jenkyns, H.C. 1972. Pelagic “oolites” from the Tethyan Jurassic. Journal of Geology, 80, 21–33.
  • 65. Jenkyns, H.C. 1974. Origin of red nodular limestones (Ammonitico Rosso, Knollenkalke) in the Mediterranean Jurassic: a diagenetic model. Special Publications of the International Association of Sedimentologists, 1, 249–271.
  • 66. Jenkyns, H.C. 1999. Mesozoic anoxic events and palaeoclimate. Zentralblatt für Geologie un Paläontologie, Teil I, 7–9, 943–949.
  • 67. Jones, B. and Manning, A.C. 1994 Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111, 111–129.
  • 68. Jurewicz, E. 2005. Geodynamic evolution of the Tatra Mts. And the Pieniny Klippen Belt (Western Carpathians): problems and comments. Acta Geologica Polonica, 55, 295–338.
  • 69. Kotański, Z. 1959. Stratigraphical sections of the High-Tatric series in the Polish Tatra Mountains. Biuletyn Instytutu Geologicznego, 139, 1–160. [In Polish with English summary]
  • 70. Kotański, Z. 1961. Tectogenese et reconstitution de la paleo-geographie de la zone Haut-Tatrique dans les Tatras. Acta Geologica Polonica, 11, 187–476. [In Polish with French summary]
  • 71. Kotański, Z. and Radwański, A. 1959. High-Tatric Tithonian in the Osobita region, its fauna with Pygope Diphya and products of volcanoes. Acta Geologica Polonica, 9, 519–538. [In Polish with English summary]
  • 72. Krobicki, M. 1994. Stratigraphic significance and palaeoecology of the Tithonian–Berriasian brachiopods in the Pieniny Klippen Belt, Carpathians, Poland. Studia Geologica Polonica, 106, 89–156.
  • 73. Kujau, A., Heimhofer, U., Hochuli, P.A., Pauly, S., Morales, C., Adatte, T., Föllmi, K., Ploch, I. and Mutterlose, J. 2013. Reconstructing Valanginian (Early Cretaceous) mid-latitude vegetation and climate dynamics based on spore-pollen assemblages. Review of Palaeobotany and Palynology, 197, 50–69.
  • 74. Lefeld, J. 1968. Stratigraphy and palaeogeography of the High-Tatric Lower Cretaceous in the Tatra Mountains. Studia Geologica Polonica, 24, 1–115. [In Polish with English summary]
  • 75. Lefeld, J. and Radwański, A. 1960. Les débris de Saccocoma dans les coupes du Malm et du Neocomien haut-tatrique des Tatras Polonaises. Acta Geologica Polonica, 10, 593–618. [In Polish with French summary]
  • 76. Lefeld, J., Gaździcki, A., Iwanow, A., Krajewski, K. and Wójcik, K. 1985. Jurassic and Cretaceous lithostratigraphic units of the Tatra Mountains. Studia Geologica Polonica, 84, 7–93.
  • 77. Leinfelder. R.R., Nose, M., Schmid, D.U. and Werner, W. 1993. Microbial crusts of the Late Jurassic: composition, palaeoecological significance and importance in reef construction. Facies, 29, 195–230.
  • 78. Li, H.-Y. and Zhang, S.-H. 2005. Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibilities. Chinese Journal of Geophysics, 48, 1454–1461.
  • 79. Li, Y.-H. and Schoonmaker, J.E. 2003. Chemical Compositions and Mineralogy of Marine Sediments. Treatise on Geochemistry, 7, 1–35.
  • 80. Liu, Q., Deng, C., Yu, Y., Torrent, J., Jackson, M.J., Banerjee, S.K. and Zhu, R. 2005. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International, 161, 102–112.
  • 81. Lodowski, D.G., Pszczółkowski, A., Szives, O., Főzy, I. and Grabowski, J. 2022a. Jurassic–Cretaceous transition in the Transdanubian Range (Hungary): integrated stratigraphy and paleomagnetic study of the Hárskút and Lókút sections. Newsletters on Stratigraphy, 55, 99–135.
  • 82. Lodowski, D.G., Pszczółkowski, A., Wilamowski, A. and Grabowski, J. 2022b. Jurassic–Cretaceous transition in the High- Tatric succession (Giewont Unit, Western Tatra Mts, Poland): integrated stratigraphy and microfacies. Acta Geologica Polonica, 72, 107–135.
  • 83. Lowrie, W. 1990. Identification of ferromagnetic minerals by coercivity and unblocking temperature properties. Geophysical Research Letters, 17, 159–162.
  • 84. Madzin, J., Sýkora, M. and Soták, J. 2014. Stratigraphic position of alkaline volcanic rocks in the autochtonous cover of the High-Tatric Unit (Western Tatra Mts., Central Western Carpathians, Slovakia). Geological Quarterly, 58, 163–180.
  • 85. McLennan, S.M. 2001. Weathering and global denudation. The Journal of Geology, 101, 295–303.
  • 86. Michalík, J. 2007. Sedimentary rock record and microfacies indicators of the latest Triassic to mid-Cretaceous tensional development of the Zliechov Basin (Central Western Carpathians). Geologica Carpathica, 58, 443–453.
  • 87. Michalík, J. and Vašíček, Z. 1987. Geology and stratigraphy of the Butkov Lower Cretaceous limestone deposits, Manín Unit, Middle Váh Valley (Western Slovakia). Mineralia Slovaca, 19, 115–134. [In Slovak with English summary]
  • 88. Michalík J., Reháková, D. and Vašíček, Z. 1995. Early Cretaceous sedimentary changes in West-Carpathian area. Geologica Carpathica, 46, 285–296.
  • 89. Michalík, J., Vašíček, Z., Skupien, P., Kratochvílova, L., Rehákova, D. and Halásová, E. 2005. Lower Cretaceous sequences of the Manín Unit (Butkov Quarry, Strážovskévrchy Mts, Western Carpathians) – integrated biostratigraphy and sequence stratigraphy. Slovak Geological Magazine, 11, 29–35.
  • 90. Michalík, J., Lintnerová, O., Reháková, D., Boorová, D. and Šimo, V. 2012. Early Cretaceous sedimentary evolution of a pelagic basin margin (the Manín Unit, central Western Carpathians, Slovakia). Cretaceous Research, 38, 68–79.
  • 91. Michalík, J., Reháková, D., Grabowski, J., Lintnerová, O., Svobodová, A., Schlögl, J., Sobień, K. and Schnabl, P. 2016. Stratigraphy, plankton communities, and magnetic proxies at the Jurassic/Cretaceous boundary in the Pieniny Klippen Belt (Western Carpathians, Slovakia). Geologica Carpathica, 67, 303–328.
  • 92. Michalík, J, Bąk, M., Lintnerová, O. and Méres, Š. 2017. Biostratigraphy, geochemistry and sedimentology of Middle to Late Jurassic strata in the Strážovce section (Strážovskévrchy Mts), Krížna Nappe of the Central Carpathians, Slovakia. Volumina Jurassica, XV, 161–178.
  • 93. Missoni, S. and Gawlick, H.-J. 2011. Jurassic mountain building and Mesozoic–Cenozoic geodynamic evolution of the Northern Calcareous Alps as proven in the Berchtesgaden Alps (Germany). Facies, 57, 137–186.
  • 94. Morales, C., Gardin, S., Schnyder, J., Spangenberg, J., Arnaud-Vanneau, A., Arnaud, H., Adatte, T. and Föllmi, K.B. 2013. Berriasian and early Valanginian environmental change along a transect from the Jura Platform to the Vocontian Basin. Sedimentology, 60, 36–63.
  • 95. Morgans-Bell, H.S., Coe, A.L., Hesselbo, S.P., Jenkyns, H.C., Weedon, G.P., Marshall, J.E.A., Tyson, E.V. and Williams, C.J. 2001. Integrated stratigraphy of the Kimmeridge Clay Formation (Upper Jurassic) based on exposures and boreholes in south Dorset, UK. Geological Magazine, 138, 511–539.
  • 96. Murphy, L.S. and Haugen, E.M. 1985. The distribution and abundance of phototrophic ultraplankton in the North Atlantic. Limnology and Oceanography, 30, 47–58.
  • 97. Muttoni, G., Erba, E., Kent, D.V. and Bachtadse, V. 2005. Mesozoic Alpine facies deposition as a result of past latitudinal plate motion. Nature, 434, 59–63.
  • 98. Nemčok, J., Bezák, V., Biely, A., Gorek, A., Gross, P., Halouzka, R., Janák, M., Kahan, Š., Kotański, Z., Lefeld, J., Mello, J., Reichwalder, P., Raczkowski, W., Roniewicz, P., Ryka, W., Wieczorek, J. and Zelman, J. 1994. Geological map of the Tatra Mountains. MŽP SR, GÚDŠ, Bratislava.
  • 99. Nesbitt, H.W. and Young, G.M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.
  • 100. Niebuhr, B. 2005. Geochemistry and time-series analyses of orbitally forced Upper Cretaceous marl-limestone rhytmites (Lehrte West Syncline, northern Germany). Geological Maga zine, 142, 31–55.
  • 101. Ogg, J.G. 2020. Geomagnetic polarity time scale. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M. (Eds), The Geologic Time Scale 2020, 159–192. Elsevier; Amsterdam, London, Cambridge. Oszczypko, N., Salata, D. and Krobicki, M. 2012. Early Cretaceous intra-plate volcanism in the Pieniny Klippen Belt – a case study of the Velykyi Kamenets’/Vilkhivchyk (Ukraine) and the Biała Woda (Poland) sections. Geological Quarterly, 56, 629–648.
  • 102. Plašienka, D. 1995. Passive and active margin history of the northern Tatricum (Western Carpathians, Slovakia. Geologische Rundschau, 84, 748–760.
  • 103. Plašienka, D. 2003. Dynamics of Mesozoic pre-orogenic rifting in the Western Carpathians. Mitteilungen der Österreichischen Geologischen Gesellschaft, 94, 79–98.
  • 104. Plašienka, D. 2012. Jurassic syn-rift and Cretaceous syn-orogenic, coarse grained deposits related to opening and closure of the Vahic (South Penninic) Ocean in the Western Carpathians – an overview. Geological Quarterly, 56, 601–628.
  • 105. Plašienka, D. 2018. Continuity and episodicity in the early Alpine tectonic evolution of the Western Carpathians: How large-scale processes are expressed by the orogenic architecture and rock record data. Tectonics, 37, 2029–2079.
  • 106. Plašienka, D. 2019. Linkage of the Manín and Klape units with the Pieniny Klippen Belt and Central Western Carpathians: balancing the ambiguity. Geologica Carpathica, 70, 35–61.
  • 107. Plašienka, D. and Ožvoldová, L. 1996. New data about the age of radiolarites from the Belice Unit (Považský Inovec Mts., Central Western Carpathians). Slovak Geological Magazine, 1, 21–26.
  • 108. Pomar, L., Morsilli, M., Hallock, P. and Bádenas, B. 2012. Internal waves, an under-explored source of turbulence events in the sedimentary record. Earth Science Reviews, 111, 56–81.
  • 109. Price, G.D., Főzy, I. and Pálfy, J. 2016. Carbon cycle history through the Jurassic–Cretaceous boundary: A new global δ13 C stack. Palaeogeography, Palaeoclimatology, Palaeoecology. 451, 46–61.
  • 110. Pszczółkowski, A. 2018. Upper Jurassic bacteria from the Raptawicka Turnia Limestone Formation in the Mały Giewont area (Western Tatra Mountains, Poland), Geological Quarterly, 62, 840–857.
  • 111. Pszczółkowski, A., Grabowski, J. and Wilamowski, A. 2016. Integrated biostratigraphy and carbon isotope stratigraphy of the Upper Jurassic shallow water carbonates of the High-Tatric Unit (Mały Giewont area, Western Tatra Mountains, Poland). Geological Quarterly, 60, 893–918.
  • 112. Putiš, M., Soták, J., Li, Q.-L., Ondrejka, M., Li, X.-H., Hu, Z., Ling, X., Nemec, O., Németh, Z. and Ružička, P. 2019. Origin and age determination of the Neotethys Meliata Basin ophiolite fragments in the Late Jurassic–Early Cretaceous accretionary wedge mélange (Inner Western Carpathians, Slovakia). Minerals, 9, 652.
  • 113. Rais, P., Louis-Schmid, B., Bernasconi, M. and Weissert, H. 2007. Palaeogeographic and palaeoclimatic reorganization around the Middle–Late Jurassic transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 251, 527–546.
  • 114. Rameil, N. 2005. Carbonate sedimentology, sequence stratigraphy, and cyclostratigraphy of the Tithonian in the Swiss and French Jura Mountains. A high-resolution record of changes in sea level and climate. Ph.D. thesis. GeoFocus, 13, 246 pp.
  • 115. Ray, D.C., van Buchem, F.S.P., Baines, G., Davies, A., Gréselle, B., Simmons, M.D. and Robson, C. 2019. The magnitude and cause of short-term eustatic Cretaceous sea-level change: A synthesis. Earth-Science Reviews, 197, 102901.
  • 116. Reháková, D. 2000. Calcareous dinoflagellate and calpionellid bioevents versus sea-level fluctuations recorded in the West-Carpathian (Late Jurassic/Early Cretaceous) pelagic environments. Geologica Carpathica, 51, 229–243.
  • 117. Riding, R. 1983. Cyanoliths (Cyanoids): Oncoids formed by calcified Cyanophytes. In: Peryt, T. (Ed.), Coated Grains, 276–283. Springer-Verlag; Berlin, Heidelberg.
  • 118. Robbins, L.J., Lalonde, S.V., Planavsky, N.J., Partin, C.A., Reinhard, C.T., Kendall, B., Scott, C., Hardisty, D.S., Gill, B.C., Alessi, D.S., Dupont, C.L., Saito, M.A., Crowe, S.A., Poulton, S.W., Bekker, A., Lyons, T.W. and Konhauser, K.O. 2016. Trace elements at the intersection of marine biology and geochemical evolution. Earth Science Reviews, 163, 323–348.
  • 119. Rutsch, H.-J., Mangini, A., Bonani, G., Dittrich-Hannen, B., Kubik, P.W., Suter, M. and Segl, M. 1995. 10Be and Ba concentrations in West African sediments trace productivity in the past. Earth and Planetary Sciences Letters, 133, 129–143.
  • 120. Satolli, S. and Turtù, A. 2016. Early Cretaceous magnetostratigraphy of the Salto del Cieco section (Northern Apennines, Italy). Newsletters on Stratigraphy, 49, 361–382.
  • 121. Schmid, S.M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M. and Ustaszewski, K. 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.
  • 122. Schneider, R.R. Price, B., Müller, P.J., Kroon. D. and Alexander, I. 1997. Monsoon related variations in Zaire (Congo) sediment load and influence of fluvial silicate supply on marine productivity in the east equatorial Atlantic during the last 200,000 years. Paleoceanography, 12, 463–481.
  • 123. Schnetger, B., Brumsack, H.-J., Schale, H., Hinrichs, J. and Dittert, L. 2000. Geochemical characteristics of deep-sea sediments from the Arabian Sea: a high-resolution study. Deep-Sea Research II, 47, 2735–2768.
  • 124. Shen, J., Schoepfer, S.D., Feng, Q., Zhou, L., Yu, J., Song, H., Wei, H. and Algeo, T.J. 2015. Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth-Science Reviews, 149, 136–162.
  • 125. Sidhu, P.S., Gilkes, R.J. and Posner, A.M. 1977. Mechanism of the low temperature oxidation of synthetic magnetites. Journal of Inorganic and Nuclear Chemistry, 39, 1953–1958.
  • 126. Soták, J., Plašienka, D., Spišiak, J. and Uher, P. 1993. Neptunian carbonate dykes hosted by basic volcanic rocks in the Považský Inovec Mts. (Western Carpathians). Mineralia Slovaka, 25, 193–201. [In Slovak with English summary]
  • 127. Stampfli, G.M. and Hochard, C. 2009. Plate tectonics of the Alpine realm. In: Murphy, J.B., Keppie, J.D., Hynes, A.J. (Eds), Ancient Orogens and Modern Analogues. Geological Society, London, Special Publications, 327, 89–111.
  • 128. Staniszewska, A. and Ciborowski, T. 2000. Lower Cretaceous breccia from autochthonous High-Tatric succession in Western Tatra Mts. Przegląd Geologiczny, 48, 246–250. [In Polish with English summary]
  • 129. Steiner, T.M.C., Gawlick, H.-J., Melcher, F. and Schlagintweit, F. 2021. Ophiolite derived material as parent rocks for Late Jurassic bauxite: evidence for Tithonian unroofing in the Northern Calcareous Alps (Eastern Alps, Austria). International Journal of Earth Sciences, 110, 1847–1862.
  • 130. Sutton, T.T. 2013. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. Journal of Fish Biology, 83, 1508–1527.
  • 131. Szederkényi, T., Haas, J., Nagymarosy, A. and Hámor, G. 2013. Geology and History of Evolution of the Tisza Mega-Unit. In: Haas, J. (Ed.), Geology of Hungary, 244 pp. Springer; Heidelberg, New York, Dordrecht, London.
  • 132. Tian, J., Xie, X., Ma, W., Jin, H. and Wang, P. 2011. X-ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea. Paleoceanography, 26, PA4202.
  • 133. Tribovillard, N., Algeo, T.J., Lyons, T. and Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232, 12–32.
  • 134. Turner, H.E. 2018. Integrated correlation of the Kimmeridge Clay Formation (Late Jurassic–Early Cretaceous): a Boreal–Tethyan transect, 212 pp. Ph.D. Thesis, University of Portsmouth, Portsmouth, UK. https://researchportal.port.ac.uk/en/studentTheses/integrated-correlation-of-the-kim-meridge-clay-formation-late-jura
  • 135. Turner, H.E. and Huggett, J.M. 2019. Late Jurassic–Early Creta-ceous climate change record in clay minerals of the Norwe-gian-Greenland Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 534, 109331.
  • 136. van Velzen, A. 1992. Magnetic minerals in Pliocene and Pleistocene marine marls from Southern Italy. Rock magnetic properties and alteration during thermal demagnetization. Geologica Ultraiectina, 122, 154 pp.
  • 137. Védrine, S., Strasser, A. and Hug, W. 2007. Oncoid growth and distribution controlled by sea-level fluctuations and climate (Late Oxfordian, Swiss Jura Mountains). Facies, 53, 535–552.
  • 138. Walker, T.R. 1984. Diagenetic albitization of potassium feldspar in arkosic sandstones. SEPM Journal of Sedimentary Research, 54, 3–16.
  • 139. Waters, K.E., Rowson, N.A., Greenwood, R.W. and Williams, A.J. 2008. The effect of heat treatment on the magnetic properties of pyrite. Minerals Engineering, 21, 679–682.
  • 140. Wei, G., Liu, Y., Li, X., Shao, L. and Liang, X. 2003. Climatic impact on Al, K, Sc and Ti in marine sediments: Evidence from ODP Site 1144, South China Sea. Geochemical Journal, 37, 593–602.
  • 141. Wei, G., Li, X.-H., Liu, Y., Shao, L. and Liang, X. 2006. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China. Paleoceanography, 21, PA4214.
  • 142. van der Weijden, C.H., Reichart, G.-J. and van Os, B.J.H. 2006. Sedimentary trace elements records over the last 200 kyr from within and below the northern Arabian Sea oxygen minimum zone. Marine Geology, 231, 69–88.
  • 143. Weissert, H. and Channell., J.E.T. 1989. Tethyan carbonate carbon isotope stratigraphy across the Jurassic–Cretaceous boundary: an indicator of decelerated global carbon cycling? Paleoceanography, 4, 483–494.
  • 144. Weissert, H. and Mohr, H. 1996. Late Jurassic climate and its impact on carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 122, 27–43.
  • 145. Weissert, H. and Erba, E. 2004. Volcanism, CO 2 and palaeoclimate: a Late Jurassic–Early Cretaceous carbon and oxygen isotope record. Journal of the Geological Society, London, 161, 695–702.
  • 146. Weissert, H., Lini, A., Föllmi, K.B. and Kuhn, O. 1998. Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link? Palaeogeography, Palaeoclimatology, Palaeoecology, 137, 189–203.
  • 147. Westermann, S., Duchamp-Alphonse, S., Fiet, N., Fleitmann, V., Adatte, T. and Föllmi, K.B. 2013. Palaeoenvironmental changes during the Valanginian: New insights from variations in phosphorus contents and bulk- and clay mineralogies in the western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 196–208.
  • 148. Wierzbowski, H., Anczkiewicz, R., Pawlak, J., Rogov, M.A. and Kuznetsov, A.B. 2017. Revised Middle–Upper Jurassic strontium isotope stratigraphy. Chemical Geology, 446, 239–255.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-722e4a57-77e1-497a-b8d0-e7422734a2ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.