PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The emission and combustion characteristics of marine diesel engine with extreme throttled of air or exhaust ducts

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Presented paper shows the results of the laboratory tests on the relationship between the extreme throttling of both air intake duct and exhaust gas duct and gaseous emission from the marine engine. The object of research is a laboratory, 4-stroke, DI diesel engine, operated at loads from 50 kW to 250 kW at a constant speed equal to 750 rpm. During the laboratory tests the thermodynamic and exhaust gas emission characteristics of the engine were measured with technical condition recognized as "working properly" and with simulated throttling of both air intake duct and exhaust gas duct. Air intake duct throttling by 60% causes visible changes at both gas temperature and pressure behind the intercooler. The study results show significant changes of NOx and CO2 emission for considered air intake duct throttling. The best indicator of exhaust gas duct throttling among considered thermodynamic parameters of the engine is mean in-cylinder pressure. In the case of measuring the composition of exhaust gas, the throttling of the exhaust gas duct causes visible changes in CO2 and NOx emission. The conclusion is that the results of measurements of the composition of the exhaust gas may contain valuable diagnostic information about the technical condition of air intake and exhaust gas duct of the marine engine.
Rocznik
Strony
427--433
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Bibliografia
  • 1. Agarwal, D. Singh, S.K. Agarwal, A.K. (2011). Effect of Exhaust Gas Recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine, Applied Energy, 88, pp. 2900-2907.
  • 2. Buonoa, D. Senatorea, A. Pratib, M.V. (2012). Particulate filter behaviour of a Diesel engine fueled with biodiesel, Applied Thermal Engineering, 49, pp. 147-153.
  • 3. Carlton J.(2012). Marine Propellers and Propulsion Third Ed. Elsevier Ltd.
  • 4. Chalet, D. Mahe, A. Migaud, J. Hetet, J.-F. (2011). A frequency modelling of the pressure waves in the inlet manifold of internal combustion engine, Applied Energy, 88, pp. 2988-2994.
  • 5. Heywood J.B. (1988). Internal Combustion Engine Fundamentals, McGraw-Hill.
  • 6. IMO, (2013). Marine Engine IMO Tier II Programme.
  • 7. Kowalski, J. (2013). The model of the exhaust gas duct flow of the marine 4-stroke diesel engine. Journal of Polish CIMAC, 8(1), pp. 59-66.
  • 8. Kowalski, J. (2016). An experimental study of emission and combustion Characteristics of marine diesel engine with fuel Injector malfunctions, Polish Maritime Research, 23(1), pp. 77-84.
  • 9. Lin, C.-Y. (2002), Reduction of particulate matter and gaseous emission from marine diesel engines using a catalyzed particulate filter, Ocean Engineering, 29, pp. 1327-1341..
  • 10. Sarvi, A. and Zevenhoven, R. (2010) Large-scale diesel engine emission control parameters, Energy, 35, pp. 1139-1145
  • 11. Sarvi, A. Fogelholm, C.J. Zevenhoven, R. (2008). Emissions from large-scale medium-speed diesel engines: 1. Influence of engine operation mode and turbocharger, Fuel processing technology, 89, pp. 510-519.
  • 12. Sarvi, A. Fogelholm, C.J. Zevenhoven, R. (2008). Emissions from large-scale medium-speed diesel engines: 2. Influence of fuel type and operating mode, Fuel processing technology, 89, pp. 520-527.
  • 13. Uriondo, Z. Grados, C. Clemente, M. Gutiérrez, J.M. Martín, L. (2011). Effects of charged air temperature and pressure on NOx emissions of marine medium speed engines, Transportation Research Part D: Transport and Environment, 16(4), pp. 288-295.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-722e12b8-dcbb-46ac-8344-9a99962e2381
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.