ON SOME STABILITY PROPERTIES OF POLYNOMIAL FUNCTIONS

Dorota Budzik

Institute of Mathematics and Computer Science Jan Długosz University in Częstochowa Armii Krajowej 13/15, 42-200 Częstochowa, Poland
e-mail: d.budzik@ajd.czest.pl

Abstract. In this paper we present conditions under which a function F with a control function f, in the following sense

$$
\left\|\Delta_{y}^{n+1} F(x)\right\| \leq \Delta_{y}^{n+1} f(x), \quad x \in \mathbb{R}
$$

can by uniformly approximated by a polynomial function of degree at most n.

1. Introduction

We start with the notation and definitions used in this paper.
Definition 1. Let $(G,+)$ stand for an Abelian group. Let $f: \mathbb{R} \rightarrow G$ be a given function and let $y \in \mathbb{R}$ be fixed. Then a difference operator Δ_{y} is defined by the formula

$$
\Delta_{y} f(x)=f(x+y)-f(x), \quad x \in \mathbb{R},
$$

and, for a positive integer n, by

$$
\Delta_{y}^{n+1} f(x)=\Delta_{y} \Delta_{y}^{n} f(x), \quad x \in \mathbb{R}
$$

Definition 2. A map $f: \mathbb{R} \rightarrow G$ is called a polynomial function of degree at most n if and only if

$$
\Delta_{y}^{n+1} f(x)=0
$$

for all $x, y \in \mathbb{R}$.
Definition 3. A map $f: \mathbb{R} \rightarrow G$ is called a monomial function of order n if and only if

$$
\Delta_{y}^{n} f(x)=n!f(y)
$$

for all $x, y \in \mathbb{R}$.

It is easy to see that a monomial function of order n is a polynomial function of degree at most n.
Definition 4. Let $I \subset \mathbb{R}$ be an open interval and let $f: I \rightarrow \mathbb{R}$ be a function. A function f is called convex of order n, or shortly n-convex $(n \in \mathbb{N})$, if and only if

$$
\Delta_{y}^{n+1} f(x) \geq 0
$$

for every $x \in I$ and every $y \in(0,+\infty)$ such that $x+(n+1) y \in I$.
A function $f: I \rightarrow \mathbb{R}$ is concave of order n, or shortly n-concave, if and only if $-f$ is n-convex. The above notions are due to $[3-5]$.

In [1] we have proved the following
Theorem 1. Let $(S,+)$ be an Abelian semingroup and let $(Y,\|\cdot\|)$ be a k-dimensional real normed linear space. Let further $f: S \rightarrow \mathbb{R}$ be a function such that $\Delta_{y}^{n} f(x) \geq 0$ for all $x, y \in S$, and $F: S \rightarrow Y$ be a mapping such that the inequality

$$
\left\|n!F(y)-\Delta_{y}^{n} F(x)\right\| \leq n!f(y)-\Delta_{y}^{n} f(x)
$$

holds for all $x, y \in S$.
Then there exists a monomial mapping $M: S \rightarrow Y$ of order n such that

$$
\|F(x)-M(x)\| \leq k \cdot f(x)
$$

for all $x \in S$.
In this paper we consider the functional inequality

$$
\left\|\Delta_{y}^{n+1} F(x)\right\| \leq \Delta_{y}^{n+1} f(x)
$$

and we look for the conditions implying the existence of a polynomial function P such that

$$
\|F(x)-P(x)\| \leq k \cdot f(x)
$$

We shall use the following theorem which was proved in [5]:
Theorem 2. Let $n \in \mathbb{N}$ and let $I \subset \mathbb{R}$ be an interval. If $f: I \rightarrow \mathbb{R}$ is n-concave, $g: I \rightarrow \mathbb{R}$ is n-convex and $f(x) \leq g(x), x \in I$, then there exists a polynomial w of degree at most n such that $f(x) \leq w(x) \leq g(x), x \in I$.

2. Results

Theorem 3. Let $(Y,\|\cdot\|)$ be a k-dimensional real normed linear space. Let further $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x) \geq 0, x \in \mathbb{R}$, and $F: \mathbb{R} \rightarrow Y$ be a mapping such that the following inequality

$$
\begin{equation*}
\left\|\Delta_{y}^{n+1} F(x)\right\| \leq \Delta_{y}^{n+1} f(x) \tag{1}
\end{equation*}
$$

holds for all $x, y \in \mathbb{R}$.

Then there exists a polynomial mapping $P: \mathbb{R} \rightarrow Y$ such that

$$
\|F(x)-P(x)\| \leq k f(x), \quad x \in \mathbb{R}
$$

Proof. Assume that $F: \mathbb{R} \rightarrow Y$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy (1). Then for every $y^{*} \in Y^{*},\left\|y^{*}\right\|=1$ and for all $x, y \in \mathbb{R}$ we have

$$
-\Delta_{y}^{n+1} f(x) \leq \Delta_{y}^{n+1} y^{*} \circ F(x) \leq \Delta_{y}^{n+1} f(x)
$$

Hence

$$
\begin{equation*}
\Delta_{y}^{n+1}\left(y^{*} \circ F+f\right)(x) \geq 0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{y}^{n+1}\left(y^{*} \circ F-f\right)(x) \leq 0 \tag{3}
\end{equation*}
$$

for every $y^{*} \in Y^{*},\left\|y^{*}\right\|=1$ and for all $x, y \in \mathbb{R}$.
Let $\left\{e_{1}, \ldots, e_{k}\right\}$ be a basis of Y such that $\left\|e_{i}\right\|=1$ for all $i \in\{1, \ldots, k\}$. Let further $y_{i}^{*}: Y \rightarrow \mathbb{R}$ be a projection onto the i th axis, i.e. $y_{i}^{*}\left(y_{1} e_{1}+\ldots y_{k} e_{k}\right)=$ y_{i} for $\left(y_{1}, \ldots, y_{k}\right) \in \mathbb{R}^{k}, \quad i \in\{1, \ldots, k\}$. Clearly, $y_{i}^{*} \in Y^{*}$ and $\left\|y_{i}^{*}\right\|=1$ for all $i \in\{1, \ldots, k\}$.

For every $i \in\{1, \ldots, k\}$, we define functions $p_{i}: \mathbb{R} \rightarrow \mathbb{R}$ and $q_{i}: \mathbb{R} \rightarrow \mathbb{R}$ by the following formulas:

$$
\begin{equation*}
p_{i}(x):=y_{i}^{*} \circ F(x)+f(x), x \in \mathbb{R} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{i}(x):=y_{i}^{*} \circ F(x)-f(x), x \in \mathbb{R} \tag{5}
\end{equation*}
$$

Since $f(x) \geq 0$ for all $x \in \mathbb{R}$, we infer that

$$
p_{i}(x) \geq q_{i}(x)
$$

for every $i \in\{1, \ldots, k\}$ and for all $x \in \mathbb{R}$.
From (2) we deduce that for every $i \in\{1, \ldots, k\}$ the function p_{i} is n-convex. From (3) we have that for every $i \in\{1, \ldots, k\}$ the function q_{i} is n-concave.

By virtue of Theorem 2, we infer that for every $i \in\{1, \ldots, k\}$ there exists a polynomial function w_{i} of degree at most n such that

$$
\begin{equation*}
q_{i}(x) \leq w_{i}(x) \leq p_{i}(x), x \in \mathbb{R} \tag{6}
\end{equation*}
$$

Then, by (4), (5) and (6), we obtain

$$
\begin{equation*}
\left|y_{i}^{*} \circ F(x)-w_{i}(x)\right| \leq f(x) \tag{7}
\end{equation*}
$$

for all $i \in\{1, \ldots, k\}$ and for all $x \in \mathbb{R}$.
Now, we define a function $P: \mathbb{R} \rightarrow Y$ by the formula

$$
P(x)=w_{1}(x) \cdot e_{1}+\ldots+w_{k}(x) \cdot e_{k}, \quad x \in \mathbb{R}
$$

The function P is, of course, a polynomial function of degree at most n. We have also, by (7),

$$
\begin{aligned}
\|F(x)-P(x)\| & =\left\|\sum_{i=1}^{k}\left(y_{i}^{*}(F(x))-w_{i}(x)\right) e_{i}\right\| \\
& \leq \sum_{i=1}^{k}\left|y_{i}^{*}(F(x))-w_{i}(x)\right| \cdot\left\|e_{i}\right\| \leq k \cdot f(x)
\end{aligned}
$$

for all $x \in \mathbb{R}$.
Ger [2] considered the operator

$$
\delta_{y}^{n} f(x):=\Delta_{\frac{y-x}{n+1}}^{n+1} f(x)
$$

Then f is n-convex if and only if

$$
x \leq y \Rightarrow \delta_{y}^{n} f(x) \geq 0
$$

Analogically we can prove Theorem 4.
Theorem 4. Let $I \subset \mathbb{R}$ be an open interval and let $(Y,\|\cdot\|)$ be a k-dimensional real normed linear space. Let further $F: I \rightarrow Y$ and $f: I \rightarrow \mathbb{R}$ be mappings such that the following inequality

$$
\left\|\delta_{y}^{n} F(x)\right\| \leq \delta_{y}^{n} f(x)
$$

holds for all $x, y \in I$.
If $f(x) \geq 0, x \in I$, then there exists a polynomial mapping P of degree at most n such that

$$
\|F(x)-P(x)\| \leq k f(x), x \in I
$$

References

[1] D. Budzik. Stability properties of monomial functions. Commentationes Mathematicae, XLII(2), 183-198, 2002.
[2] R. Ger. Stability of polynomial mappings controlled by n-convex functionals. Inequalities and Applications, (Ed. R.P. Agarwal), pp. 255-268, World Scientific Publishing Company, Singapore 1994.
[3] M. Kuczma. An Introduction to the Theory of Functional Equations and Inequalities. Polish Scientific Publisher, Warszawa-Kraków-Katowice 1985.
[4] T. Popoviciu. Sur quelques propriétés des functions d'une ou de deux variables réelles. Mathematica (Cluj), 8, 1-85, 1934.
[5] Sz. Wąsowicz. Polynomial selections and separation by polynomials. Studia Math., 120, 75-82, 1996.

