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Abstract. In this paper we present conditions under which a function F with
a control function f, in the following sense

n+1 n+1
[AyT F(@)| < AyT f(z), zeR,

can by uniformly approximated by a polynomial function of degree at most n.

1. Introduction

We start with the notation and definitions used in this paper.

Definition 1. Let (G,+) stand for an Abelian group. Let f : R — G be
a given function and let y € R be fixed. Then a difference operator A, is
defined by the formula

Ayflz)=flx+y) - flz), zeR,
and, for a positive integer n, by
AZ+1f(x) = A Ay f(z), xeR.

Definition 2. A map f: R — G is called a polynomial function of degree at
most n if and only if
At f(z) =0

for all z,y € R.
Definition 3. A map f: R — G is called a monomial function of order n if
and only if

Ay f(x) =nlf(y)
for all z,y € R.
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It is easy to see that a monomial function of order n is a polynomial function
of degree at most n.
Definition 4. Let I C R be an open interval and let f : I — R be a function.
A function f is called convex of order n, or shortly n—convex (n € N), if and
only if

Aptif(z) >0

for every x € I and every y € (0,+00) such that  + (n+ 1)y € 1.

A function f : I — R is concave of order n, or shortly n—concave, if and
only if —f is n—convex. The above notions are due to [3-5].

In [1] we have proved the following

Theorem 1. Let (S,+) be an Abelian semingroup and let (Y| - ||) be
a k—dimensional real normed linear space. Let further f : S — R be a function
such that A f(x) > 0 for all z,y € S, and F' : S — Y be a mapping such
that the inequality

[n!F(y) — AyF(x)|| < nlf(y) — Ay f()

holds for all z,y € S.
Then there exists a monomial mapping M : .S — Y of order n such that
[1F(x) = M(z)|| < k- f(x)
for all x € S.
In this paper we consider the functional inequality

IAHF ()] < A f (),

and we look for the conditions implying the existence of a polynomial function
P such that
|1F(z) = P(x)l| < k- f(z).
We shall use the following theorem which was proved in [5]:

Theorem 2. Let n € N and let I C R be an interval. If f : I — R is
n—concave, g : I — R is n—convex and f(z) < g(x),x € I, then there exists
a polynomial w of degree at most n such that f(z) < w(x) < g(x),z € I.

2. Results

Theorem 3. Let (Y, || - ||) be a k-dimensional real normed linear space. Let
further f : R — R be a function such that f(z) > 0,z € R, and F : R - Y
be a mapping such that the following inequality

AR (@) < Ay f () (1)

holds for all xz,y € R.
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Then there exists a polynomial mapping P : R — Y such that
|F(x) = P(z)| < kf(z), zeR.

Proof. Assume that F': R — Y and f : R — R satisfy (1). Then for every
y* € Y*, |ly*|| =1 and for all z,y € R we have

—AT f (@) < ATyt o F(z) < AJH f ().
Hence
ATy o F+ f)(z) 2 0 (2)
and
AYH(y* o F = f)(x) <0 (3)

for every y* € Y*, |ly*|| = 1 and for all z,y € R.

Let {eq1,... ,ex} beabasisof Y such that ||e;|| = 1 foralli € {1,... ,k}. Let
further y : Y — R be a projection onto the ith axis, i.e. yf(yie1+...yrer) =
y; for (y1,...,yr) €R* i€ {1,... k}. Clearly, yf € Y* and ||y}| = 1 for all
ie{l,... k}.

For every ¢ € {1,... ,k}, we define functions p; : R > R and ¢; : R - R
by the following formulas:

pi(z) :=y; o F(x) + f(z), v € R (4)
and

qi(z) = y; o F(z) — f(z), v € R, ()
Since f(x) > 0 for all z € R, we infer that

pi(z) = ¢i(x)
for every ¢ € {1,... ,k} and for all z € R.
From (2) we deduce that for every i € {1,...,k} the function p; is

n—convex. From (3) we have that for every ¢ € {1,...,k} the function ¢;
is n—concave.

By virtue of Theorem 2, we infer that for every ¢ € {1,... ,k} there exists
a polynomial function w; of degree at most n such that

gi(x) < wi(z) < pi(z), z € R. (6)
Then, by (4), (5) and (6), we obtain
lyi o F(@) — wi(x)| < f(x) (7)

for all i € {1,... ,k} and for all z € R.
Now, we define a function P : R — Y by the formula

P(z) =wi(x)-e1+ ... +wp(z) -ex, xR
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The function P is, of course, a polynomial function of degree at most n. We

have also, by (7),
k

1F () = Pa)ll = 1| D (y; (F(x)) = wi(z))eill
i=1
<D 1 (F(@) = wil@)| - lleill < k- f(x)
i=1

for all x € R.
Ger [2] considered the operator

0y f (@) = AL f(x).

n+1

Then f is n—convex if and only if
r <y=0d,f(x) >0.

Analogically we can prove Theorem 4.
Theorem 4. Let I C R be an open interval and let (Y,| - ||) be
a k—dimensional real normed linear space. Let further F' : I — Y and
f: I — R be mappings such that the following inequality

16y F(2)]| < &y f ()

holds for all x,y € I.
If f(z) > 0,2 € I, then there exists a polynomial mapping P of degree at
most n such that
|F(z) — P(z)| < kf(z), z €I
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