PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A double-iterative learning and cross-coupling control design for high-precision motion control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In multi-axis motion control systems, the tracking errors of single axis load and the contour errors caused by the mismatch of dynamic characteristics between the moving axes will affect the accuracy of the motion control system. To solve this issue, a biaxial motion control strategy based on double-iterative learning and cross-coupling control is proposed. The proposed control method improves the accuracy of the motion control system by improving individual axis tracking performance and contour tracking performance. On this basis, a rapid control prototype (RCP) is designed, and the experiment is verified by the hardware and software platforms, LabVIEW and Compact RIO. The whole design shows enhancement in the precision of the motion control of the multi- axis system. The performance in individual axis tracking and contour tracking is greatly improved.
Rocznik
Strony
427--442
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wz.
Twórcy
autor
  • School of Mechanical Engineering Hubei University of Technology, China
autor
  • School of Mechanical Engineering Hubei University of Technology, China
autor
  • School of Mechanical Engineering Hubei University of Technology, China
autor
  • School of Mechanical Engineering Hubei University of Technology, China
Bibliografia
  • [1] Fatih M.C., Erenturk K., Trajectory Tracking Control and Contouring Performance of Three-Dimensional CNC, IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2212–2220 (2016).
  • [2] Boukadida Wafa et al., Trajectory tracking of robotic manipulators using optimal sliding mode control, 2017 IEEE International Conference on Control, Automation and Diagnosis (ICCAD) (2017).
  • [3] Chi R., Huang B., Hou Z., Jin S., Data-driven high-order terminal iterative learning control with a faster convergence speed, International Journal of Robust and Nonlinear Control, vol. 28, no. 3 (2017).
  • [4] Jae-Ho Y., Rajbhary U.L., Discrete Loop Shaping Controller Optimization for Ultra - precision Positioning Stage, Journal of Mechanical Engineering, vol. 49, no. 10, pp. 178–185 (2013).
  • [5] Yeh S. S., Sun J. T., Design of perfectly matched zero-phase error tracking control for multi-axis motion control systems, SICE Conference, IEEE, pp. 528–533 (2012).
  • [6] Ouyang P. R., Dam T., Huang J., Zhang W. J., Contour tracking control in position domain, Mechatronics, vol. 22, no. 7, pp. 934–944 (2012).
  • [7] Yeh S. S., Hsu P. L., Analysis and design of integrated control for multi-axis motion systems, IEEE Transactions on Control Systems Technology, vol. 11, no. 3, pp. 375–382 (2003).
  • [8] Koren Y., Cross-Coupled Biaxial Computer Controls for Manufacturing Systems, Journal of Dynamic Systems Measurement and Control, vol. 102, no. 4, pp. 265–272 (1980).
  • [9] Koren Y., Lo C.C., Variable-Gain Cross-Coupling Controller for Contouring, CIRP Annals – Manufacturing Technology, vol. 40, no. 1, pp. 371–374 (1991).
  • [10] Wang L.-M., Lu S., Improved robust iterative learning control of direct driven XY table, Electric Machines and Control (2016).
  • [11] Yang Lidong, Liu Y., Han H., A novel cross-coupled synchronizing control method of industrial robot for trajectory tracking, IEEE International Conference on Mechanical Engineering (2016).
  • [12] Chen P. R., Yang Y. P., Chou J. J., Cross-coupling control of a powered wheelchair driven by rim motors, IEEE International Conference on Systems (2017).
  • [13] Baoren Li et al., Research on cross-coupled synchronization fuzzy control of double valve, IEEE International Conference on Fluid Power and Mechatronics (2015).
  • [14] Long Li., Adaptive zero phase based internal model control for direct drive XY table, IEEE Control and Decision Conference (2014).
  • [15] Wu J., Liu C., Xiong Z., Ding H., Precise contour following for biaxial systems via an A-type iterative learning cross-coupled control algorithm, International Journal of Machine Tools and Manufacture, vol. 93, pp. 10–18 (2015).
  • [16] Barton K.L., Hoelzle D.J., Alleyne A.G., Johnson A.J.W., Cross-coupled iterative learning control of systems with dissimilar dynamics: design and implementation, International Journal of Control, vol. 84, no. 7, pp. 1223–1233 (2011).
  • [17] Zhao X. M., Guo Q. D., Zero Phase Adaptive Robust Cross Coupling Control for NC Machine Multiple Linked Servo Motor, Proceedings of the CSEE, vol. 28, no. 12, pp. 129–133 (2008).
  • [18] Ouyang P. R., Pano V., Acob J., Position domain contour control for multi-DOF robotic system, Mechatronics, vol. 23, no. 8, pp. 1061–1071 (2013).
  • [19] Ouyang P. R., Kang H. M., Yue W. H., Liu D.S., Revisiting hybrid five-bar mechanism: Position domain control application, IEEE International Conference on Information and Automation, pp. 795–799 (2014).
  • [20] Li X. F., Zhao H., Zhao X., Ding H., Research on Contour Error Compensation Method with Matched Servo Dynamic Characteristics, Journal of Mechanical Engineering, vol. 53, no. 1, pp. 150–156 (2017).
  • [21] Yeh S. S., Hsu P. L., A new approach to bi-axial cross-coupled control, IEEE IEEE International Conference on Control Applications, pp. 168–173 (2000).
  • [22] Sun J., Hu C., Research on modeling of contour error for motion control system of CNC machine, IEEE Second International Conference on Mechanic Automation and Control Engineering, pp. 1553–1556 (2011).
  • [23] Chi R., Liu X., Zhang R., Hou Z., Huang B., Constrained data-driven optimal iterative learning control, Journal of Process Control, vol. 55, pp. 10–29 (2017).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-722adff4-c0b2-4399-b2a8-9e59c451c7a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.