PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The benefits of synthetic or natural hydrogels application in agriculture : an overview article

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, a growing problem of water deficit has been observed, which is particularly acute for agriculture. To alleviate the effects of drought, hydrogel soil additives – superabsorbent polymers (SAPs) – can be helpful. The primary objective of this article was to present a comparison of the advantages resulting from the application of synthetic or natural hydrogels in agriculture. The analysis of the subject was carried out based on 129 articles published between 1992 and 2020. In the article, the advantages of the application of hydrogel products in order to improve soil quality, and crop growth. Both kinds of soil amendments (synthetic and natural) similarly improve the yield of crops. In the case of natural origin polymers, a lower cost of preparation and a shorter time of biodegradation are indicated as the main advantage in comparison to synthetic polymers, and greater security for the environment.
Wydawca
Rocznik
Tom
Strony
208--224
Opis fizyczny
Bibliogr. 129 poz., rys., tab., wykr.
Twórcy
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
Bibliografia
  • ABDEL-RAOUF M.E., EL-SAEED S.M., ZAKI E.G., AL-SABAGH A.M. 2018. Green chemistry approach for preparation of hydrogels for agriculture applications through modification of natural polymers and investigating their swelling properties. Egyptian Journal of Petroleum. Vol. 27 p. 1345–1355. DOI 10.1016/j.ejpe.2018.09.002.
  • ABEDI-KOUPAI J., SOHRAB F., SWARBRICK G. 2008. Evaluation of hydrogel application on soil water retention characteristics. Journal of Plant Nutrition. Vol. 31 p. 317–331. DOI 10.1080/01904160701853928.
  • ABOBATTA W. 2018. Access impact of hydrogel polymer in agricultural sector. Advances in Agriculture and Environmental Science.Vol. 1 p. 59−64. DOI 10.30881/aaeoa.00011.
  • ABU-ZREIG M. 2006. Control of rainfall-induced soil erosion with various types of polyacrylamide. Journal of Soils and Sediments. Vol. 6 p. 137–144. DOI 10.1065/jss2006.04.152.
  • AGABA H., ORIKIRIZA L.J.B., ESEGU J.F.O., OBUA J., KABASA J.D., HÜTTERMANN A. 2010. Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions. CLEAN – Soil Air Water. Vol. 38 p. 328–335. DOI 10.1002/clen.200900245.
  • AGASSI M., BEN-HUR M. 1992. Stabilizing steep slopes with soil conditioners and plants. Soil Technology. Vol. 5 p. 249–256.
  • AGEGNEHUA G., NELSONA P.N., BIRDA M.I. 2016. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil and Tillage Research. Vol. 160 p. 1–13. DOI 10.1016/j.still.2016.02.003.
  • AHMED EM. 2015. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research. Vol. 6 p. 105–121. DOI 10.1016/j.jare.2013.07.006.
  • AJWA H.A., TROUT T.J. 2006. Polyacrylamide and water quality effects on infiltration in sandy loam soils. Soil Science Society of America Journal. Vol. 70 p. 643–650. DOI 10.2136/sssaj2005.0079.
  • AL-HUMAID A.I. 2005. Effects of hydrophilic polymer on the survival of bottonwood (Conocarpus erectus) seedlings grown under drought stress. European Journal of Horticultural Science. Vol. 70 p. 283–288.
  • BAHRAM M., MOHSENI N., MOGHTADER M. 2016. An introduction to hydrogels and some recent applications. In: Emerging concepts in analysis and applications of hydrogels. Ed. S.B. Majee. Rijeka, Croatia. IntechOpen p. 9–38.
  • BAI C., ZHANG S., HUANG L., WANG H., WANG W., YE Q. 2015. Starch-based hydrogel loading with carbendazim for controlled-release and water absorption. Carbohydrate Polymers. Vol. 125 p. 376–383. DOI 10.1016/j.carbpol.2015.03.004.
  • BAIAMONTE G., PASQUALE C.D., MARSALA V., CIMÒ G., ALONZO G., CRESCIMANNO G., CONTE P. 2015. Structure alteration of a sandy-clay soil by biochar amendments. Journal of Soils and Sediments. Vol. 15 p. 816–824. DOI 10.1007/s11368-014-0960-y.
  • BARTNIK C. 2008. Wpływ hydrożelu na przeżywalność siewek i sadzonek sosny pospolitej w warunkach suszy [The influence of hydrogel on the survival rate of seedlings and the plants of Pinus Sylvestris L. during drought]. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej. R. 10. Z. 2(18) p. 329–338.
  • BARVENIK F.W. 1994. Polyacrylamide characteristics related to soil applications. Soil Science. Vol. 158 p. 235–243.
  • BASHIR S., HINA M., IQBAL J., RAJPAR A.H., MUJTABA M.A., ALGHAMDI N. A., WAGEH S., RAMESH K., RAMESH S. 2020. Review. Fundamental concepts of hydrogels: Synthesis, properties, and their applications. Polymers. Vol. 12 p. 3–60. DOI 10.3390/polym12112702.
  • BATOOL A., TAJ S., RASHID A., KHALID A., QADEER S., SALEEM A.R., GHUFRAN M.A. 2015. Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Frontiers in Plant Science. Vol. 6 p. 1–13. DOI 10.3389/fpls.2015.00733.
  • BELLOULA M., DRIDI H., KALLA M. 2020. Spatialization of water erosion using analytic hierarchy process (AHP) method in the high valley of the Medjerda, eastern Algeria. Journal of Water and Land Development. Vol. 44 p. 19–25. DOI 10.24425/jwld.2019.127041.
  • BEN-HUR M., LETEY J. 1989. Effect of polysaccharides, clay dispersion, and impact energy on water infiltration. The Soil Science Society of America Journal. Vol. 53 p. 233–238. DOI 10.2136/sssaj1989.03615995005300010041x.
  • BOLOGNA L.S., ANDRAWES F.F., BARVENIK F.W., LENTZ R.D., SOJKA R.E. 1999. Analysis of residual acrylamide in field crops. Journal of Chromatographic Science. Vol. 37 p. 240–244. DOI 10.1093/chromsci/37.7.240.
  • BUCHMANN C., BENTZ J., SCHAUMANN G.E. 2015. Intrinsic and model polymer hydrogel-induced soil structural stability of a silty sand soil as affected by soil moisture dynamics. Soil & Tillage Research. Vol. 154 p. 22–33. DOI 10.1016/j.still.2015.06.014.
  • CAULFIELD M.J., HAO X., QIAO G.G., SOLOMON D.H. 2003. Degradation on polyacrylamides. Part II. Polyacrylamide gels. Polymer. Vol. 44 p. 3817–3826. DOI 10.1016/s0032-3861(03)00330-6.
  • CAULFIELD M.J, QIAO G.G., SOLOMON D.H. 2002. Some aspects of the properties and degradation of polyacrylamides. Chemical Reviews. Vol. 102 p. 3067–3084. DOI 10.1021/cr010439p.
  • CHACHA M.S., ANDREW B., VEGI M.R. 2019. Amendment of soil water retention and nutrients holding capacity by using sugar cane bagasse. Current Agriculture Research Journal. Vol. 7 p. 224–235. DOI 10.12944/CARJ.7.2.10.
  • CHAN K.Y., SIVAPALAN S. 1996. Amelioration of a degraded harstetting soil using an anionic polymeric conditioner. Soil Technology. Vol. 9 p. 91–100.
  • COOK B.D., BLOOM P.R., HALBACH T.R. 1997. Fate of a polyacrylate polymer during composting of simulated municipal solid waste. Journal of Environmental Quality. Vol. 26 p. 618–625. DOI 10.2134/jeq1997.00472425002600030005x.
  • DAR S.B., MISHRA D., ZAHIDA R., AFSHANA B.B. 2017. Hydrogel: To enhance crop productivity per unit available water under moisture stress agriculture. Bulletin of Environment, Pharmacology and Life Sciences. Vol. 6 p. 129–135.
  • DAS D., PRAKASH P., ROUT P.K., BHALADHARE S. 2020. Synthesis and characterization of superabsorbent cellulose-based hydrogel for agriculture application. Starch – Stärke. Vol. 73, 1900084 p. 1–10. DOI 10.1002/star.201900284.
  • DĄBROWSKA J., LEJCUŚ K. 2012. Characteristics of selected properties of superabsorbents. Infrastructure and Ecology of Rural Areas. Vol. 3 p. 59–68.
  • DEERY D., SIVAPALAN S., CHAN K.Y. 2002. Effect of polyacrylamides and gypsum on turbidity of water. Proceedings Australian Society of Soil Science National Conference. Perth, Western Australia, Australia p. 52–53.
  • DELL’AMBROGIO G., WONG J.W.Y., FERRARI B.J.D. 2019. Ecotoxicological effects of polyacrylate, acrylic acid, polyacrylamide and acrylamide on soil and water organisms. External Report. Dübendorf: Swiss Centre for Applied Ecotoxicology (Ecotox Centre). pp. 50.
  • DEMITRI C., SCALERA F., MADAGHIELE M., SANNINO A., MAFFEZZOLI A. 2013. Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. International Journal of Polymer Science. Vol. 2013, 435073 p. 1–6. DOI 10.1155/2013/435073.
  • DENG W., HALLETT P.D., JENG D-S., SQUIRE G.R., TOOROP P.E., IANNETTA P.P.M. 2015. The effect of natural seed coatings of Capsella bursa-pastoris L. Medik. (shepherd’s purse) on soil-water retention, stability and hydraulic conductivity. Plant Soil. Vol. 387 p. 167–176. DOI 10.1007/s11104-014-2281-8.
  • DENG W., JENG D-S., TOOROP P.E., SQUIRE G.R., IANNETTA P.P.M. 2012. A mathematical model of mucilage expansion in myxospermous seeds of Capsella bursa-pastoris (shepherd’s purse). Annals of Botany. Vol. 109 p. 419–427. DOI 10.1093/aob/mcr296.
  • EDEN M., GERKE H.H., HOUOT S. 2017. Organic waste recycling in agriculture and related effects on soil water retention and plant available water: a review. Agronomy for Sustainable Development. Vol. 37 p. 1–21. DOI 10.1007/s13593-017-0419-9.
  • EL-ALSAYED S.G., ISMAIL S.M. 2017. Impact of soil amendments and irrigation water on growth and flowering of Rosa plant grown in sandy soil Rosa hybrida. Alexandria Science Exchange Journal. Vol. 38 p. 628–641. DOI 10.21608/ASEJAIQJSAE.2017.4058.
  • EL-HADY O.A., PIEH S.H., OSMAN S. 1990. Modified polyacrylamide hydrogels as conditioners for sandy soils. Egyptian Journal of Soil Science. Vol. 30 p. 423–432.
  • EL-HADY O.A., WANAS S.A. 2006. Water and fertilizer use efficiency by cucumber grown under stress on sandy soil treated with acrylamide hydrogels. Journal of Applied Sciences Research. Vol. 2 p. 1293–1297.
  • EL-SAIED H., EL-HADY O.A., BASTA A.H., EL-DEWINY C.Y., ABO-SEDERA S. A. 2016. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels. Journal of the Saudi Society of Agricultural Sciences. Vol. 15 p. 188–194. DOI 10.1016/j.jssas.2014.11.004.
  • ENGELBRECHT M., BOCHET E., GARCÍA-FAYOS P. 2014. Mucilage secretion: an adaptive mechanism to reduce seed removal by soil erosion? Biological Journal of the Linnean Society. Vol. 111 p. 241–251. DOI 10.1111/bij.12198.
  • FAJARDO A.R., FÁVARO S.L., RUBIRA A.F., MUNIZ E.C. 2013. Dual-network hydrogels based on chemically and physically crosslinked chitosan/chondroitin sulfate. Reactive and Functional Polymers. Vol. 73 p. 1662–1671. DOI 10.1016/j.reactfunctpolym.2013.10.003.
  • FENNELL E., HUYGHE J.M. 2019. Chemically responsive hydrogel deformation mechanics: A review. Molecules. Vol. 24 p. 1–22. DOI 10.3390/molecules24193521.
  • FOX D.M., BRYAN R.B. 1999. The relationship of soil loss by interrill erosion to slope gradient. Catena. Vol. 38 p. 211–222. DOI 10.1016/S0341-8162(99)00072-7.
  • GUILHERME M.R., AOUADA F.A., FAJARDO A.R., MARTINS A.F., PAULINO A. T., DAVI M.F.T., RUBIRA A.F., MUNIZ E.C. 2015. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. European Polymer Journal. Vol. 72 p. 365–385. DOI 10.1016/j.eurpo-lymj.2015.04.017.
  • GUILHERME M.R., MOIA T.A., REIS A.V., PAULINO A.T., RUBIRA A.F., MATTOSO L.H.C., MUNIZ E.C., TAMBOURGI EB. 2009. Synthesis and water absorption transport mechanism of a pH sensitive polymer network structured on vinyl-functionalized pectin. Biomacromolecules. Vol. 10 p. 190–196. DOI 10.1021/bm801250p.
  • HARISUSENO D. 2020. Comparative study of meteorological and hydrological drought characteristics in the Pekalen River basin, East Java, Indonesia. Journal of Water and Land Development. Vol. 45 p. 29–41. DOI 10.24425/jwld.2020.133043.
  • HAYASHI T., NISHIMURA H., SAKANO K., TANI Y. 1994. Microbial degradation of poly(sodium acrylate). Bioscience, Biotechnology and Biochemistry. Vol. 58 p. 444–446. DOI 10.1080/bbb.58.444.
  • HOLLIMAN P.J., CLARK J.A., WILLIAMSON J.C., JONES D.L. 2005. Model and field studies of the degradation of crosslinkedpolyacrylamide gels used during the revegetation of slate waste. Science of the Total Environment. Vol. 336 p. 13–24. DOI 10.1016/j.scitotenv.2004.06.006.
  • HÜTTERMANN A., ORIKIRIZA L.J.B., AGABA H. 2009. Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands. Clean – Soil, Air, Water. Vol. 37 p. 517–526. DOI 10.1002/clen.200900048.
  • ISLAM M.R., HU Y., MAO S., JIA P., ENEJI A.E., XUE X. 2011. Effects of water-saving superabsorbent polymer on antioxidant enzyme activities and lipid peroxidation in corn (Zea mays L.) under drought stress. Journal of the Science of Food and Agriculture. Vol. 91 p. 813–819. DOI 10.1002/jsfa.4252.
  • ISMAIL H., IRANI M., AHMAD Z. 2013. Starch-Based Hydrogels: Present Status and Applications. International Journal of Polymeric Materials and Polymeric Biomaterials. Vol. 62 p. 411–420. DOI 10.1080/00914037.2012.719141.
  • JENKINS D., MOLASH E., TOBIASON S., RUSH S. 2001. Polymer use and testing for erosion and sediment control on construction sites [online]. Stormwater/Erosion Control/Vegetation Management. [Access 12.06.2021]. Available at: https://www.stormh2o.com/erosion-control/vegetation-management/article/13000790/polymer-use-and-testing-for-erosion-and-sediment-control-on-con-struction-sites
  • KARAOGLU M., ACAR F. 2018. Determining the effects of soil conditioners on water erosion in soils with different textures by using rainfall simulator. Fresenius Environmental Bulletin. Vol. 27 p. 5244–5251.
  • KAZANSKII K.S., DUBROVSKII S.A. 1992. Chemistry and physics of ‘agricultural’ hydrogels. Advances in Polymer Science. Vol. 104 p. 97–133. DOI 10.1007/3-540-55109-3_3.
  • KOPACZ M., KOWALCZYK A., SMOROŃ S., OSTRACH Z. 2018. Sustainable management of water resources in terms of the water needs for agricultural purposes in small rural communes based on the example of the Grybów commune, Poland. Journal of Water and Land Development. Vol. 39 p. 67–76. DOI 10.2478/jwld-2018-0060.
  • KOWALCZYK A., ŁABĘDZKI L., KUŹNIAR A., KOSTUCH M. 2016. An assessment of crop water deficits of the plants growing on the Małopolska Upland (Poland). Journal of Water and Land Development. Vol. 29 p. 11–22. DOI 10.1515/jwld-2016-0008.
  • KULIKOWSKI Ł. KULIKOWSKI E., MATUSZEWSKI A., KIEPURSKI J. 2018. Hydrogels in the Natural Environment – History and Technologies. Ecological Engineering. Vol. 19 p. 205–218. DOI 10.12912/23920629/99171.
  • KUMAR P.A., KUMAR G.A., VENNELA K. 2018. Role of water absorbing materials in vegetable production. Journal of Pharmacognosy and Phytochemistry. Vol. 7 p. 3639–3644.
  • LARSON R.J., BOOKLAND E.A., WILLIAMS R.T., YOCOM K.M., SAUCY D.A., FREEMAN M.B., SWIFT G. 1997. Biodegradation of acrylic acid polymers and oligomers by mixed microbial communities in activated sludge. Journal of Environmental Polymer Degradation. Vol. 5 p. 41–48. DOI 10.1007/BF02763567.
  • LAWLOR D.W. 2002. Limitation to photosynthesis in water-stressed leaves: Stomata vs. Metabolism and the role of ATP. Annals of Botany. Vol. 89 p. 871–885. DOI 10.1093/aob/mcf110.
  • LECIEJEWSKI P. 2008. Wpływ wielkości dodatku hydrożelu na zmiany uwilgotnienia i tempo przesychania gleby piaszczystej w warunkach laboratoryjnych [The influence of the hydrogel addition on the changes of the sandy soil’s moisture and the dynamics of soil drying in the laboratory conditions]. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej. R. 10. Z. 2(18) p. 306–328.
  • LEES.S., CHANG S.X., CHANGY-Y., OK Y.S. 2013. Commercial versus synthesized polymers for soil erosion control and growth of Chinese cabbage. SpringerPlus. Vol. 2 p. 1–10. DOI 10.1186/2193-1801-2-534.
  • LEE S.S., GANTZER C.J., THOMPSON A.L., ANDERSON S.H. 2011. Polyacrylamide efficacy for reducing soil erosion and runoff as influenced by slope. Journal of Soil and Water Conservation. Vol. 66 p. 172–177. DOI 10.2489/jswc.66.3.172.
  • LEE W.F., YANG L.G. 2004. Superabsorbent polymeric materials. XII. Effect of montmorillonite on water absorbency for poly(sodium acrylate) and montmorillonite nanocomposite superabsorbents. Journal of Applied Polymer Science. Vol. 92 p. 3422–3429. DOI 10.1002/app.20370.
  • LEJCUŚ K., ORZESZYNA H., PAWŁOWSKI A., G ARLIKOWSKI D. 2008. Superabsorbent application in anti-erosion systems. Infrastructure and Ecology of Rural Areas. Vol. 9 p. 189–194.
  • LENTZ R.D. 2020. Long-term water retention increases in degraded soils amended with crosslinkedpolyacrylamide. Agronomy Journal. Vol. 112 p. 2569–2580. DOI 10.1002/agj2.20214.
  • LIANG D., DU C., MA F., SHEN Y., WU K., ZHOU J. 2018. Degradation of polyacrylate in the outdoor agricultural soil measured by FTIR-PAS and LIBS. Polymers. Vol. 10(12), 1296. DOI 10.3390/polym10121296.
  • LIU J., WANG W., WANG A. 2011. Synthesis, characterization, and swelling behaviors of chitosan-g-poly(acrylic acid)/poly(vinylalcohol) semi-IPN superabsorbent hydrogels. Polymers for Advanced Technologies. Vol. 22 p. 627–634. DOI 10.1002/pat.1558.
  • LIU J., WANG Z., LI Y. 2018. Efficacy of natural polymer derivatives on soil physical properties and erosion on an experimental loess hillslope. International Journal of Environmental Research and Public Health. Vol. 15, 9 p. 1–14. DOI 10.3390/ijerph15010009.
  • LITWIŃSKA W. 2019. Systemy hydrożelowe modyfikowane oligonukleotydami jako potencjalne nośniki leków [Hydrogel systems modified with oligonucleotides as potential drug carriers]. PhD Thesis. Warszawa. Uniwersytet Warszawski. Repozytorium UW. [Access 10.06.2021]. Available at: https://depotuw.ceon.pl/han-dle/item/3477
  • LOWERY B., SWAN J., SCHUMACHER T., JONES A. 1995. Physical properties of selected soils by erosion class. Journal of Soil and Water Conservation. Vol. 50 p. 306–311.
  • LÓPEZ-VELÁZQUEZ J.C., RODRÍGUEZ-RODRÍGUEZ R., ESPINOSA-ANDREWS H., QUI-ZAPATA J.A., SOLEDAD GARCÍA-MORALES DEN-L., LUNA-B ÁRCE-NAS G., V ASSALLO-B RIGNETI E.C., GARCÍA-C ARVAJAL Z.Y. 2019. Gelatin–chitosan–PVA hydrogels and their application in agriculture. Journal of Chemical Technology & Biotechnology. Vol. 94 p. 3495–3504. DOI 10.1002/jctb.5961.
  • LU D.R., XIAO C.M., XU S.J. 2009. Starch-based completely biodegradable polymer materials. eXPRESS Polymer Letters. Vol. 3 p. 366–375. DOI 10.3144/expresspolymlett.2009.46.
  • LU S., WANG Z., HU Y., LIU B., LIU J E . 2018. Effectiveness and durability of polyacrylamide (PAM) and polysaccharide (Jag C 162) in reducing soil erosion under simulated rainfalls. Water.Vol. 10(3), 257. DOI 10.3390/w10030257.
  • MAYNARD A.A. 2000. Compost: the process and research. Bulletin –Connecticut Agricultural Experiment Station. Vol. 966 p. 1–13.
  • MCNEILL I.C., SADEGHI S.M.T. 1990. Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts: Part 2-sodium and potassium salts. Polymer Degradation and Stability. Vol. 30 p. 213–230. DOI 10.1016/0141-3910(90)90077-K.
  • MONTESANO F.F., PARENTE A., SANTAMARIA P., SANNINO A., SERIO . F. 2015. Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agriculture and agricultural science procedia. Agriculture and Agricultural Science Procedia. Vol. 4 p. 451–458. DOI 10.1016/j.aaspro.2015.03.052.
  • NEETHU T.M., DUBEY P.K., KASWALA A.R. 2018. Prospects and Applications of Hydrogel Technology in Agriculture. International Journal of Current Microbiology and Applied Sciences. Vol. 7 p. 3155–3162. DOI 10.20546/ijcmas.2018.705.369.
  • OKSIŃSKA M.P., MAGNUCKA E.G., LEJCUŚ K., PIETR S.J. 2016. Biodegradation of the crosslinkedcopolymer of acrylamide and potassium acrylate by soil bacteria. Environmental Science and Pollution Research. Vol. 23 p. 5969–5977. DOI 10.1007/s11356-016-6130-6.
  • ORTS W.J., ROA-ESPINOSA A., SOJKA R.E., GLENN G.M., IMAM S.H., ERLACHER K., PEDERSEN J.S. 2007. Use of synthetic polymers and biopolymers for soil stabilization in agricultural, construction, and military applications. Journal of Materials in Civil Engineering. Vol. 19 p. 58–66. DOI 10.1061/(ASCE)0899-1561.
  • ORTS W.J., SOJKA R.E., GLENN G.M., GROSS R.A. 2001. Biopolymer additives for the reduction of soil erosion losses during irrigation. In: Biopolymers from polysaccharides and agroproteins. Eds. R.A. Gross, C. Scholz. Washington. American Chemical Society p. 102–116.
  • OWCZARZAK W., KACZMAREK Z., SZUKAŁA J. 2006. The influence of stockosorb hydrogel on selected structureforming properties of Gray-Brown Podzolic Soil and Black Earth. Journal of Research and Applications in Agricultural Engineering. Vol. 51 p. 55–61.
  • PALUSZEK J. 2001. Wather-air properties of eroded lessives soils developed from loess. Acta Agrophysisca. Vol. 56 p. 233–245.
  • PALUSZEK J. 2010. Zmiany struktury zerodowanej gleby płowej wytworzonej z lessu pod wpływem dodatku polimeru Agroaquagel 420 [Changes of soil structure of eroded Luvisol developer from loess as a result of AgroAquaGel 420 polymer addition]. Prace i Studia Geograficzne. Vol. 45 p. 345–356.
  • PALUSZEK J., ŻEMBROWSKI W. 2006. Wpływ polimeru żelowego Stockosorb na właściwości wodne i powietrzne erodowanych gleb płowych [Influence of Stockosorb gel-forming polymer on water and air properties of eroded luvisols]. Acta Agrophysica. Vol. 8 (4) p. 903–913.
  • PALUSZEK J., ŻEMBROWSKI W. 2007. Oddziaływanie poliakrylanu sodu na właściwości wodne i powietrzne erodowanej gleby płowej wytworzonej z lessu [Influence of sodium polyacrylate on water and air properties of eroded luvisol developed from loess]. Roczniki Gleboznawcze. T. 58. Nr 3–4 p. 102–109.
  • PALUSZEK J., ŻEMBROWSKI W. 2008. Ocena przydatności polimeru AgroHydroGel do ulepszania struktury erodowanych gleb lessowych [Suitability assessment of polymer AgroHydroGel for improvement of structure of eroded loess soils]. Roczniki Gleboznawcze. T. 59. Nr 1 p. 176–182.
  • PATRO M., ZUBALA T. 2020. Use of different forms of retention as the condition of sustainable management of water resources in rural environment. Journal of Water and Land Development. Vol. 44 p. 126–135. DOI 10.24425/jwld.2019.127053.
  • PENG X., HALLETT P.D., ZHANG B., HORN R. 2011. Physical response of rigid and non-rigid soils to analogues of biological exudates. European Journal of Soil Science. Vol. 62 p. 676–684. DOI 10.1111/j.1365-2389.2011.01383.x.
  • POLYAKOV V., LAL R. 2004. Modeling soil organic matter dynamics as affected by soil water erosion. Environment International. Vol. 30 p. 547–556. DOI 10.1016/j.envint.2003.10.011.
  • RABAT N.E., HASHIMB S., MAJIDB R.A. 2016. Effect of different monomers on water retention properties of slow release fertilizer hydrogel. Procedia Engineering. Vol. 148 p. 201–207. DOI 10.1016/j.proeng.2016.06.573.
  • RODRIGUES F.H.A., SPAGNOL C., PEREIRA A.G.B., MARTINS A.F., FAJARDO A. R., RUBIRA A.F., MUNIZ E.C. 2014. Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin. Journal of Applied Polymer Science. Vol. 131, 39725 p. 1–13. DOI 10.1002/app.39725.
  • SANNINO A., DEMITRI C., MADAGHIELE M. 2009. Review. Biodegradable cellulose-based hydrogels: Design and applications. Materials. Vol. 2 p. 353–373. DOI 10.3390/ma2020353.
  • SANNINO A., NICOLAIS L. 2005. Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels. Polymer. Vol. 46 p. 4676–4685. DOI 10.3390/ma2020353.
  • SANTOS F.L., REIS J.L., MARTINS O.C., CASTANHEIRA N.L., SERRALHEIRO R.P. 2003. Comparative assessment of infiltration, runoff and erosion of sprinkler irrigated soils. Biosystems Engineering. Vol. 86(3) p. 355–364. DOI 10.1016/S1537-5110(03)00135-1.
  • SARMAH D., KARAK N. 2020. Biodegradable superabsorbent hydrogel for water holding in soil and controlled-release fertilizer. Journal of Applied Polymer Science. Vol. 137, 48495. DOI 10.1002/app.48495.
  • SENNA A.M., BOTARO V.R. 2017. Biodegradable hydrogel derived from cellulose acetate and EDTA as a reduction substrate of leaching NPK compound fertilizer and water retention in soil. Journal of Controlled Release. Vol. 260 p. 194–201. DOI 10.1016/j.jconrel.2017.06.009.
  • SEPASKHAH A.R., BAZRAFSHAN-JAHROMI A.R. 2006. Controlling runoff and erosion in sloping land with polyacrylamide under a rainfall simulator. Biosystems Engineering. Vol. 93 p. 469–474. DOI 10.1016/j.biosystemseng.2006.01.003.
  • SIVAPALAN S. 2002. Potential use of polyacrylamides (PAM) agriculture. In: Proceedings Irrigation editor. Conference Proceedings Irrigation Australia. Ed. B.G. Sutton. Sydney, New South Wales, Australia p. 339–346.
  • SMITH E.A., OEHME F.W. 1991. Acrylamide and polyacrylamide: A review of production, use, environmental fate and neurotoxicity. Reviews on Environmental Health. Vol. 9 p. 215–228. DOI 10.1515/REVEH.1991.9.4.215.
  • SOJKA R., BJORNEBERG D.L., ENTRY J., LENTZ R., ORTS W. 2007. Polyacrylamide (PAM) in agriculture and environmental land management. Advances in Agronomy. Vol. 92 p. 76–141. DOI 10.1016/S0065-2113(04)92002-0.
  • SOJKA R.E., LENTZ R.D., ROSS C.W., TROUT T.J., BJORNEBERG D.L., AASE J. K. 1998a. Polyacrylamide effects on infiltration in irrigated agriculture. Journal of Soil and Water Conservation. Vol. 53 p. 325–331.
  • SOJKA R.E., LENTZ R.D., WESTERMANN D.T. 1998b. Water and erosion management with multiple applications of polyacrylamide in furrow irrigation. Soil Science Society of America Journal. Vol. 62 p. 1672–1680. DOI 10.2136/sssaj1998.03615995006200060027x.
  • SOUZA A.J.J., GUIMARÃES R.J., DOMINGHETTI A.W., SCALCO M.S., REZENDE T.T. 2016. Water-retaining polymer and seedling type when planting irrigated coffee. Revista Ciência Agronômica. Vol. 47 p. 334–343. DOI 10.5935/1806-6690.20160039.
  • SPOSITO G. 2013. Green water and global food security. Vadose Zone Journal. Vol. 2 p. 1–6. DOI 10.2136/vzj2013.02.0041.
  • STAHL J.D., C AMERON M.D., H ASELBACH J., A UST S.D. 2000. Biodegradation of superabsorbent polymers in soil. Environmental Science and Pollution Research. Vol. 7 p. 83–88. DOI 10.1065/espr199912.014.
  • STEGMANN R., LOTTER S., KING L., HOPPING D. 1993. Fate of an absorbent gelling material for hygiene paper products in landfill andcomposting. Waste Management & Research. Vol. 11 p. 155–170.
  • SUTHERLAND G.R.J., HASELBACH J., AUST S.D. 1997. Biodegradation of crosslinked acrylic polymers by a white-rot fungus. Environmental Science and Pollution Research. Vol. 4 p. 16–20. DOI 10.1007/BF02986258.
  • TADESSE K.B., HAGOS E.Y., TAFESSE N.T., DINKA M.O. 2020. Water productivity under deficit irrigation using onion as indicato crop. Journal of Water and Land Development Vol. 45 p. 171–178. DOI 10.24425/jwld.2020.133059.
  • THOMBARE N., MISHRA S., SIDDIQUI M.Z., JHA U., SINGH D., MAHAJAN G.R. 2018. Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydrate Polymers. Vol. 185 p. 169–178. DOI 10.1016/j.carbpol.2018.01.018.
  • TOMADONI B., CASALONGUÉ C., ALVAREZ V.A. 2019. Biopolymer-based hydrogels for agriculture applications: Swelling behavior and slow release of agrochemicals. In: Polymers for agri-food applications. Ed. T. Gutiérrez. Springer Nature p. 99–125.
  • TYLISZCZAK B., PILICHOWSKI K. 2007. Charakterystyka matryc hydro-żelowych – zastosowania biomedyczne superabsorbentów polimerowych [Charakteristic of hydrogel matrices – biomedical application of polymeric superabsorbents]. Czasopismo Techniczne. Chemia. R. 104. Z. 1-Ch p. 159–167.
  • VUNDAVALLI R., VUNDAVALLI S., NAKKA M., RAO D.S. 2015 Biodegradable nano-hydrogels in agricultural farming – alternative source for water resources. Procedia Materials Science. Vol. 10 p. 548–554. DOI 10.1016/j.mspro.2015.06.005.
  • WALLACE J.S. 2000. Increasing agricultural water use efficiency to meet future food production. Agriculture, Ecosystems and Environment. Vol. 82 p. 105–119. DOI 10.1016/S0167-8809(00)00220-6.
  • WANG D., LIU X., ZENG G., ZHAO J., LIU Y., WANG Q., CHEN F., LI X., YANG Q. 2018. Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. Water Research. Vol. 130 p. 281–290. DOI 10.1016/j.watres.2017.12.007.
  • WEI J., YANG H., CAO H., AD TAN T. 2016. Using polyaspartic acid hydrogel as water retaining agent and its effect on plants under drought stress. Saudi Journal of Biological Sciences. Vol. 23 p. 654–659. DOI 10.1016/j.sjbs.2015.08.016.
  • WESTON D.P., LENTZ R.D., CAHN M.D., OGLE R.S., ROTHERT A.K., LYDY M.J. 2009. Toxicity of anionic polyacrylamide formulations when used for erosion control in agriculture. Journal of Environmental Quality. Vol. 38 p. 238–247. DOI 10.2134/jeq2008.0109.
  • WILSKE B., BAI M., LINDENSTRUTH B., BACH M., REZAIE Z., FREDE H.G., BREUER L. 2014. Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environmental Science and Pollution Research. Vol. 21 p. 9453–9460. DOI 10.1007/s11356-013-2103-1.
  • WOODHOUSE J.M., JOHNSON M.S. 1991. The effect of gel-forming polymers on seed germination and establishment. Journal of Arid Environments. Vol. 20 p. 375–380. DOI 10.1016/S0140-1963(18)30698-0.
  • WU J., WEI Y., LIN J., LIN S. 2003. Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer. Vol. 44 p. 6513–6520. DOI 10.1016/S0032-3861(03)00728-6.
  • XIONG B., LOSS R.D., SHIELDS D., PAWLIK T., HOCHREITER R., ZYDNEY A.L., KUMAR M. 2018. Polyacrylamide degradation and its implications in environmental systems. Nature partner journals Clean Water. Vol. 1, 17 p. 1–9. DOI 10.1038/s41545-018-0016-8.
  • XU S., ZHANG .L, MCLAUGHLIN N.B., MI J., CHEN Q., LIU J. 2015. Effect of synthetic and natural water absorbing soil amendment soil physical properties under potato production in a semi-arid region. Soil and Tillage Research. Vol. 148 p. 31–39. DOI 10.1016/j.still.2014.10.002.
  • YAN S., YIN J., YU Y., LUO K., CHEN X. 2009. Thermo- and pH-sensitive poly(vinylmethyl ether)/carboxymethylchitosan hydrogels cross-linked using electron beam irradiation or using glutaraldehyde as a crosslinker. Polymer International. Vol. 58(11) p. 1246–1251. DOI 10.1002/pi.2649.
  • YUAN-YUAN L., ZHAN-L I W., BING W., JUN-E L., NIAN J. 2018. Impacts of natural polymer derivative neutral polysaccharide Jag S and cationic hydroxypropyl polysaccharide Jag C162 on rainfall infiltration on an experimental loess hillslope. Soil Science and Plant Nutrition. Vol. 64 p. 244–252. DOI 10.1080/00380768.2017.1419829.
  • ZHANG J., LIU R., LI A., WANG A. 2006. Preparation, swelling behaviors and application of polyacrylamide/attapulgite superabsorbent composites. Polymers Advanced Technologies. Vol. 17 p. 12–19. DOI 10.1002/pat.676.
  • ZHANG J., WANG Q., WANG A. 2007. Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohydrate Polymers. Vol. 68 p. 367–374. DOI 10.1016/j.carbpol.2006.11.018.
  • ZHANG X.C., MILLER W.P., NEARING M.A., NORTON L.D. 1998. Effects of surface treatment of surface sealing, runoff, and interrill erosion. Transactions of the ASAE. Vol. 41 p. 989–994. DOI 10.13031/2013.17271.
  • ZOHURIAAN-MEHR M.J., KABIRI K. 2008. Superabsorbent polimer materials: A review. Iranian Polymer Journal. Vol. 17 p. 451–477.
  • ZUBALA T., PATRO M. 2016. Potential possibilities of water retention in agricultural loess catchments. Journal of Water and Land Development. Vol. 30 p. 141–149. DOI 10.1515/jwld-2016-003.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7228d85d-e723-4fca-b315-bd5a638d1804
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.