PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An all optical majority gate using nonlinear photonic crystal based ring resonators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optical logics will play a crucial role in the next generation all optical data processing networks. Therefore an all optical majority gate will be designed by using nonlinear photonic crystal ring resonators. For realizing the proposed structure we need three nonlinear resonant rings. In order to make nonlinear resonant rings, we used chalcogenide glass as the dielectric material for the dielectric rods. The output port of the proposed structure will be active only when two or three logic input ports are active. The rise and fall time values of the proposed structure are about 2 and 1 ps, respectively. The total footprint of the proposed structure is about 1287 μm2.
Słowa kluczowe
Czasopismo
Rocznik
Strony
487--498
Opis fizyczny
Bibliogr. 71 poz., rys.
Twórcy
  • Department of Electrical Engineering, East Azarbayjan Science and Research Branch, Islamic Azad University, Tabriz, Iran
  • Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
  • Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Bibliografia
  • [1] DUTTON H.J.R., Understanding Optical Communications, Prentice Hall PTR, 1998.
  • [2] KAUR S., All optical data comparator and decoder using SOA-based Mach–Zehnder interferometer, Optik 124(17), 2013, pp. 2650–2653, DOI: 10.1016/j.ijleo.2012.07.041.
  • [3] ZHANG Y., YU Y., DU C., RUAN S., CHEN X., HUANG Q., ZHOU W., Strain-independent high-temperature sensor with a suspended-core fiber based Mach–Zehnder interferometer, Optical Fiber Technology 29, 2016, pp. 6–12, DOI: 10.1016/j.yofte.2016.01.006.
  • [4] JOHN S., Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58(23), 1987, pp. 2486–2489, DOI: 10.1103/PhysRevLett.58.2486.
  • [5] YABLONOVITCH E., Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters 58(20), 1987, pp. 2059–2062, DOI: 10.1103/PhysRevLett.58.2059.
  • [6] LIU D., GAO Y., TONG A., HU S., Absolute photonic band gap in 2D honeycomb annular photonic crystals, Physics Letters A 379(3), 2015, pp. 214–217, DOI: 10.1016/j.physleta.2014.11.030.
  • [7] ALIPOUR-BANAEI H., SERAJMOHAMMADI S., MEHDIZADEH F., ANDALIB A., Band gap properties of two -dimensional photonic crystal structures with rectangular lattice, Journal of Optical Communications 36(2), 2015, pp. 109–114, DOI: 10.1515/joc-2014-0049.
  • [8] ALIPOUR-BANAEI H., MEHDIZADEH F., Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis, Journal of Optical Communications 34(4), 2013, pp. 285–293, DOI: 10.1515/joc-2013-0033.
  • [9] SAGHIRZADEH DARKI B., GRANPAYEH N., Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method, Optics Communications 283(20), 2010, pp. 4099–4103, DOI: 10.1016/j.optcom.2010.06.013.
  • [10] MUSAVIZADEH S.M., SOROOSH M., MEHDIZADEH F., Optical filter based on photonic crystal, Indian Journal of Pure and Applied Physics 53(11), 2015, pp. 736–739.
  • [11] ALIPOUR-BANAEI H., SERAJMOHAMMADI S., MEHDIZADEH F., HASSANGHOLIZADEH-KASHTIBAN M., Special optical communication filter based on Thue–Morse photonic crystal structure, Optica Applicata 46(1), 2016, pp. 145–152, DOI: 10.5277/oa160113.
  • [12] SAHEL S., AMRI R., BOUAZIZ L., GAMRA D., LEJEUNE M., BENLAHSEN M., ZELLAMA K., BOUCHRIHA H., Optical filters using Cantor quasi-periodic one dimensional photonic crystal based on Si/SiO2, Superlattices and Microstructures 97, 2016, pp. 429–438, DOI: 10.1016/j.spmi.2016.07.007.
  • [13] ALIPOUR-BANAEI H., MEHDIZADEH F., HASSANGHOLIZADEH-KASHTIBAN M., Important effect of defect parameters on the characteristics of Thue–Morse photonic crystal filters, Advances in OptoElectronics, 2013, article ID 856148, DOI: 10.1155/2013/856148.
  • [14] REN C., WANG P., CHENG L., FENG S., GAN L., LI Z., Multichannel W3 Y-branch filter in a two dimensional triangular-lattice photonic crystal slab, Optik 125(24), 2014, pp. 7203–7206, DOI: 10.1016/ j.ijleo.2014.07.139.
  • [15] WANG Y., CHEN D., ZHANG G., WANG J., TAO S., A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors, Optics Communications 363, 2016, pp. 13–20, DOI: 10.1016/ j.optcom.2015.10.070.
  • [16] MANSOURI-BIRJANDI M.A., TAVOUSI A., GHADRDAN M., Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators, Photonics and Nanostructures – Fundamentals and Applications 21, 2016, pp. 44–51, DOI: 10.1016/j.photonics.2016.06.002.
  • [17] TAVOUSI A., MANSOURI-BIRJANDI M.A., GHADRDAN M., RANJBAR-TORKAMANI M., Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–drop filtering, Photonic Network Communications 34(1), 2017, pp. 131–139, DOI: 10.1007/s11107-016-0680-x.
  • [18] MEHDIZADEH F., SOROOSH M., A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities, Photonic Network Communications 31(1), 2016, pp. 65–70, DOI: 10.1007/s11107-015-0531-1.
  • [19] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., An optical demultiplexer based on photonic crystal ring resonators, Optik 127(20), 2016, pp. 8706–8709, DOI: 10.1016/j.ijleo.2016.06.086.
  • [20] VENKATACHALAM K., ROBINSON S., UMAMAHESWARI S., Two dimensional photonic crystal based four channel demultiplexer for ITU.T.G 694.2 CWDM systems, International Journal of Photonics and Optical Technology 2(3), 2016, pp. 37–41.
  • [21] RAKHSHANI M.R., MANSOURI-BIRJANDI M.A., Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators, Physica E: Low-dimensional Systems and Nanostructures 50, 2013, pp. 97–101, DOI: 10.1016/j.physe.2013.03.003.
  • [22] TALEBZADEH R., SOROOSH M., DAGHOOGHI T., A 4-channel demultiplexer based on 2D photonic crystal using line defect resonant cavity, IETE Journal of Research 62(6), 2016, pp. 866–872, DOI: 10.1080/03772063.2016.1217175.
  • [23] RAWAL S., SINHA R.K., Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer, Optics Communications 282(19), 2009, pp. 3889–3894, DOI: 10.1016/j.optcom.2009.06.046.
  • [24] BAZARGANI H.P., Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal, Optics Communications 285(7), 2012, pp. 1848–1853, DOI: 10.1016/j.optcom.2011.12.002.
  • [25] YANIK M.F., FAN S., SOLJAČIĆ M., JOANNOPOULOS J.D., All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry, Optics Letters 28(24), 2003, pp. 2506–2508, DOI: 10.1364/OL.28.002506.
  • [26] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., A novel proposal for optical decoder switch based on photonic crystal ring resonators, Optical and Quantum Electronics 48(1), 2016, article ID 20, DOI: 10.1007/s11082-015-0313-0.
  • [27] MEHDIZADEH F., ALIPOUR-BANAEI H., SERAJMOHAMMADI S., Study the role of non-linear resonant cavities in photonic crystal-based decoder switches, Journal of Modern Optics 64(13), 2017, pp. 1233–1239, DOI: 10.1080/09500340.2016.1275854.
  • [28] OUAHAB I., RAFAH N., A novel all optical 4×2 encoder switch based on photonic crystal ring resonators, Optik 127(19), 2016, pp. 7835–7841, DOI: 10.1016/j.ijleo.2016.05.080.
  • [29] ZHANG Y., ZHANG Y., LI B., Optical switches and logic gates based on self-collimated beams in two -dimensional photonic crystals, Optics Express 15(15), 2007, pp. 9287–9292, DOI: 10.1364/ OE.15.009287.
  • [30] ZHU Z.-H., YE W.-M., JI J.-R., YUAN X.-D., ZEN C., High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals, Optics Express 14(5), 2006, pp. 1783–1788, DOI: 10.1364/ OE.14.001783.
  • [31] ALIPOUR-BANAEI H., MEHDIZADEH F., SERAJMOHAMMADI S., HASSANGHOLIZADEH-KASHTIBAN M., A 2*4 all optical decoder switch based on photonic crystal ring resonators, Journal of Modern Optics 62(6), 2015, pp. 430–434, DOI: 10.1080/09500340.2014.957743.
  • [32] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., Proposal for 4-to-2 optical encoder based on photonic crystals, IET Optoelectronics 11(1), 2017, pp. 29–35, DOI: 10.1049/iet-opt.2016.0022.
  • [33] HASSANGHOLIZADEH-KASHTIBAN M., SABBAGHI-NADOOSHAN R., ALIPOUR-BANAEI H., A novel all optical reversible 4×2 encoder based on photonic crystals, Optik 126(20), 2015, pp. 2368–2372, DOI: 10.1016/j.ijleo.2015.05.140.
  • [34] MONIEM T.A., All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators, Journal of Modern Optics 63(8), 2016, pp. 735–741, DOI: 10.1080/09500340.2015.1094580.
  • [35] ALIPOUR-BANAEI H., RABATI M.G., ABDOLLAHZADEH-BADELBOU P., MEHDIZADEH F., Application of self-collimated beams to realization of all optical photonic crystal encoder, Physica E: Low-dimensional Systems and Nanostructures 75, 2016, pp. 77–85, DOI: 10.1016/j.physe.2015.08.011.
  • [36] ALIPOUR-BANAEI H., RABATI M.G., ABDOLLAHZADEH-BADELBOU P., MEHDIZADEH F., Effect of self-collimated beams on the operation of photonic crystal decoders, Journal of Electromagnetic Waves and Applications 30(11), 2016, pp. 1440–1448, DOI: 10.1080/09205071.2016.1202785.
  • [37] SHAIK E. HAQ, RANGASWAMY N., Design of photonic crystal-based all-optical AND gate using T-shaped waveguide, Journal of Modern Optics 63(10), 2016, pp. 941–949, DOI: 10.1080/09500340.2015.11 11455.
  • [38] PARANDIN F., KARKHANEHCHI M.M., Terahertz all-optical NOR and AND logic gates based on 2D photonic crystals, Superlattices and Microstructures 101, 2017, pp. 253–260, DOI: 10.1016/j.spmi.201 6.11.038.
  • [39] SHAIK E., RANGASWAMY N., Multi-mode interference-based photonic crystal logic gates with simple structure and improved contrast ratio, Photonic Network Communications 34(1), 2017, pp. 140–148, DOI: 10.1007/s11107-016-0683-7.
  • [40] JIANG Y.-C., LIU S.-B., ZHANG H.-F., KONG X.-K., Reconfigurable design of logic gates based on a two -dimensional photonic crystals waveguide structure, Optics Communications 332, 2014, pp. 359–365, DOI: 10.1016/j.optcom.2014.07.038.
  • [41] GOUDARZI K., MIR A., CHAHARMAHALI I., GOUDARZI D., All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal, Optics and Laser Technology 78, 2016, pp. 139–142, DOI: 10.1016/j.optlastec.2015.10.013
  • [42] CHUNRONG TANG, XINYU DOU, YUXI LIN, HONGXI YIN, BIN WU, QINGCHUN ZHAO, Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals, Optics Communications 316, 2014, pp. 49–55, DOI: 10.1016/j.opt com.2013.11.053.
  • [43] ALIPOUR-BANAEI H., SERAJMOHAMMADI S., MEHDIZADEH F., All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators, Optik 125(19), 2014, pp. 5701–5704, DOI: 10.1016/ j.ijleo.2014.06.013.
  • [44] ALIPOUR-BANAEI H., SERAJMOHAMMADI S., MEHDIZADEH F., All optical NAND gate based on nonlinear photonic crystal ring resonators, Optik 130, 2017, pp. 1214–1221, DOI: 10.1016/j.ijleo.2016.11.190.
  • [45] MEHDIZADEH F., SOROOSH M., Designing of all optical NOR gate based on photonic crystal, Indian Journal of Pure and Applied Physics 54(1), 2016, pp. 35–39.
  • [46] ALIPOUR-BANAEI H., SEIF-DARGAHI H., Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure, Photonics and Nanostructures – Fundamentals and Applications 24, 2017, pp. 29–34, DOI: 10.1016/j.photonics.2017.03.001.
  • [47] NEISY M., SOROOSH M., ANSARI-ASL K., All optical half adder based on photonic crystal resonant cavities, Photonic Network Communications 35(2), 2018, pp. 245–250, DOI: 10.1007/s11107-017-0736-6.
  • [48] CHERAGHI F., SOROOSH M., AKBARIZADEH G., An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities, Superlattices and Microstructures 113, 2018, pp. 359–365, DOI: 10.1016/j.spmi.2017.11.017.
  • [49] JALALI-AZIZPOOR M.R., SOROOSH M., SEIFI-KAVIAN Y., Application of self-collimated beams in realizing all-optical photonic crystal-based half-adder, Photonic Network Communications 36(3), 2018, pp. 344–349, DOI: 10.1007/s11107-018-0786-4.
  • [50] DAGHOOGHI T., SOROOSH M., ANSARI-ASL K., A novel proposal for all-optical decoder based on photonic crystals, Photonic Network Communications 35(3), 2018, pp. 335–341, DOI: 10.1007/s111 07-017-0746-4.
  • [51] DAGHOOGHI T., SOROOSH M., ANSARI-ASL K., Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators, Applied Optics 57(9), 2018, pp. 2250–2257, DOI: 10.1364/AO.57.002250.
  • [52] ZAMANIAN-DEHKORDI S.S., SOROOSH M., AKBARIZADEH G., An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures, Optical Review 25(4), 2018, pp. 523–531, DOI: 10.1007/ s10043-018-0443-2.
  • [53] YOUSSEFI B., MORAVVEJ-FARSHI M.K., GRANPAYEH N., Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals, Optics Communications 285(13–14), 2012, pp. 3228–3233, DOI: 10.1016/j.optcom.2012.02.081.
  • [54] TAVOUSI A., MANSOURI-BIRJANDI M.A., SAFFARI M., Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators, Physica E: Low-dimensional Systems and Nanostructures 83, 2016, pp. 101–106, DOI: 10.1016/j.physe.201 6.04.007.
  • [55] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., FARSHIDI E., All optical 2-bit analog to digital converter using photonic crystal based cavities, Optical and Quantum Electronics 49(1), 2017, article ID 38, DOI: 10.1007/s11082-016-0880-8.
  • [56] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., FARSHIDI E., Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure, Applied Optics 56(7), 2017, pp. 1799–1806, DOI: 10.1364/AO.56.001799.
  • [57] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., FARSHIDI E., A novel proposal for all optical analog-to-digital converter based on photonic crystal structures, IEEE Photonics Journal 9(2), 2017, article ID 4700311, DOI: 10.1109/JPHOT.2017.2690362.
  • [58] MIAO B., CHEN C., SHARKWAY A., SHI S., PRATHER D.W., Two bit optical analog-to-digital converter based on photonic crystals, Optics Express 14(17), 2006, pp. 7966–7973, DOI: 10.1364/OE.14.007966.
  • [59] FASIHI K., All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals, Optik 125(21), 2014, pp. 6520–6523, DOI: 10.1016/j.ijleo.2014.08.030.
  • [60] XU C., LIU X., Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters, Optics Letters 28(12), 2003, pp. 986–988, DOI: 10.1364/OL.28.000986.
  • [61] MEMARZADEH ISFAHANI B., AHAMDI TAMEH T., GRANPAYEH N., MALEKI JAVAN A.R., All-optical NOR gate based on nonlinear photonic crystal microring resonators, Journal of the Optical Society of America B 26(5), 2009, pp. 1097–1102, DOI: 10.1364/JOSAB.26.001097.
  • [62] BAO J., XIAO J., FAN L., LI X., HAI Y., ZHANG T., YANG C., All-optical NOR and NAND gates based on photonic crystal ring resonator, Optics Communications 329, 2014, pp. 109–112, DOI: 10.1016/ j.optcom.2014.04.076.
  • [63] DANAIE M., KAATUZIAN H., Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect, Optical and Quantum Electronics 44(1–2), 2012, pp. 27–34, DOI: 10.1007/ s11082-011-9527-y.
  • [64] ALIPOUR-BANAEI H., MEHDIZADEH F., Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters, Optik 124(17), 2013, pp. 2639–2644, DOI: 10.1016/ j.ijleo.2012.07.029.
  • [65] ALIPOUR-BANAEI H., JAHANARA M., MEHDIZADEH F., T-shaped channel drop filter based on photonic crystal ring resonator, Optik 125(18), 2014, pp. 5348–5351, DOI: 10.1016/j.ijleo.2014.06.056.
  • [66] TAALBI A., BASSOU G., YOUCEF MAHMOUD M., New design of channel drop filters based on photonic crystal ring resonators, Optik 124(9), 2013, pp. 824–827, DOI: 10.1016/j.ijleo.2012.01.045.
  • [67] YOUCEF MAHMOUD M., BASSOU G., TAALBI A., A new optical add–drop filter based on two-dimensional photonic crystal ring resonator, Optik 124(17), 2013, pp. 2864–2867, DOI: 10.1016/j.ijleo.20 12.08.072.
  • [68] PETRENKO A.D., Nonlinear Kerr effect in magnetic crystals, Physics of the Solid State 41(4), 1999, pp. 591–594, DOI: 10.1134/1.1130831.
  • [69] AFZAL S., AHMADI V., EBNALI-HEIDARI M., All-optical tunable photonic crystal NOR gate based on the nonlinear Kerr effect in a silicon nanocavity, Journal of the Optical Society of America B 30(9), 2013, pp. 2535–2539, DOI: 10.1364/JOSAB.30.002535.
  • 70] PEDRAZA CABALLERO L.E., VASCO J.P., GUIMARÃES P.S.S., VILELA NETO O.P., All-optical Majority and Feynman gates in photonic crystals, [In] 2015 30th Symposium on Microelectronics Technology and Devices (SBMicro), 2015, DOI: 10.1109/SBMicro.2015.7298150.
  • [71] CHRISTINA X.S., KABILAN A.P., Design of optical logic gates using self-collimated beams in 2D photonic crystal, Photonic Sensors 2(2), 2012, pp. 173–179, DOI: 10.1007/s13320-012-0054-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7228d73f-a0ee-42b7-bdb6-33cdecfb0952
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.