PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deposition and accumulation of marine aerosol and its penetration into concretes exposed to the marine atmospheric zone: an overview

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Marine aerosol, containing an enormous source of chloride, coupled with severe environmental conditions (e.g., high temperature, high relative humidity), poses a threat to the durability of concrete exposed to the marine atmospheric zone. The distribution of marine aerosol is spatial and temporal dependent, and thus, the deposition rate of airborne chlorides Ddep can vary a lot with geological and environmental factors. Chloride profile in concrete exposed to marine aerosol is a two-zone profile due to the wetting/drying action. The peak chloride concentration Cmax and depth of the convection zone Δx are largely affected by time, materials, environmental conditions which usually is less than 10 mm. Many models based on Fick’s law are developed to predict chloride transport in unsaturated concrete under wetting-drying cycles. However, the prediction of marine aerosol penetration into concrete is far from satisfactory, due to lack of enough experimental and theoretical researches.
Rocznik
Strony
art. no. e65, 2023
Opis fizyczny
Bibliogr. 103 poz., rys., tab., wykr.
Twórcy
autor
  • School of Civil Engineering, Central South University, Changsha 410075, China
  • National Engineering Laboratory for High Speed Railway Construction, Changsha 410075, China
autor
  • School of Civil Engineering, Central South University, Changsha 410075, China
  • National Engineering Laboratory for High Speed Railway Construction, Changsha 410075, China
autor
  • Southeast Coastal Railway Fujian Co., Ltd, Fuzhou 350013, China
  • Southeast Coastal Railway Fujian Co., Ltd, Fuzhou 350013, China
  • Southeast Coastal Railway Fujian Co., Ltd, Fuzhou 350013, China
autor
  • Southeast Coastal Railway Fujian Co., Ltd, Fuzhou 350013, China
Bibliografia
  • 1. Ma Y, Zhang X, Xin J, et al. Mass and number concentration distribution of marine aerosol in the Western Pacific and the influence of continental transport[J]. EnvironPollut. 2022;298:118827.
  • 2. Li J, Han Z, Yao X. A modeling study of the influence of sea salt on inorganic aerosol concentration, size distribution, and deposition in the western Pacific Ocean[J]. Atmos Environ. 2018;188:157-73.
  • 3. Morillas H, de Mendonca FFF, Derluyn H, et al. Decay processes in buildings close to the sea induced by marine aerosol: Salt depositions inside construction materials[J]. Sci Total Environ. 2020;721: 137687.
  • 4. Costa A, Appleton J. Case studies of concrete deterioration in a marine environment in Portugal[J]. Cement Concr Compos. 2002;24(1):169-79.
  • 5. Moreno JD, Bonilla M, Adam JM, et al. Determining corrosion levels in the reinforcement rebars of buildings in coastal areas. A case study in the Mediterranean coastline[J]. Construct Build Mater. 2015;100:11-21.
  • 6. Liu J, Zhang T, Ding X, et al. A clear north-to-south spatial gradience of chloride in marine aerosol in Chinese seas under the influence of East Asian Winter Monsoon[J]. Sci Total Environ. 2022;832:154929.
  • 7. Blanchard DC. The electrification of the atmosphere by particles from bubbles in the sea[J]. Prog Oceanogr. 1963;1:73-202.
  • 8. Woodcock AH. Salt nuclei in marine air as a function of altitude and wind force[J]. J Atmosph Sci. 1953;10(5):362-71.
  • 9. Monahan EC, Fairall CW, Davidson KL, et al. Observed interrelations between 10m winds, ocean whitecaps and marine aerosols[J]. Q J R Meteorol Soc. 1983;109(460):379-92.
  • 10. Blanchard DC, Woodcock AH. Bubble formation and modification in the sea and its meteorological significance[J]. Tellus. 1957;9(2):145-58.
  • 11. Resch F. Air sea particulate exchanges in coastal regions[C] First Int. Conf Meteorol Air. 1982;25:54-7.
  • 12. Fitzgerald JW. Marine aerosols: A review[J]. Atmos Environ A Gen Top. 1991;25(3-4):533-45.
  • 13. Cole IS, Paterson DA, Ganther WD. Holistic model for atmospheric corrosion Part 1-Theoretical framework for production, transportation and deposition of marine salts[J]. Corros Eng, Sci Technol. 2003;38(2):129-34.
  • 14. Yu QR, Zhang F, Li J, et al. Analysis of sea-salt aerosol size distributions in radiative transfer[J]. J Aerosol Sci. 2019;129:71-86.
  • 15. Nair PR, Parameswaran K, Kumar SVS, et al. Continental influence on the spatial distribution of particulate loading over the Indian Ocean during winter season[J]. J Atmos Solar Terr Phys. 2004;66(1):27-38.
  • 16. Wang B, Chen Y, Zhou S, et al. The influence of terrestrial transport on visibility and aerosol properties over the coastal East China Sea[J]. Sci Total Environ. 2019;649:652-60.
  • 17. Zhou M, Zhang Y, Han Y, et al. Spatial and temporal characteristics of PM2 5 acidity during autumn in marine and coastal area of Bohai Sea, China, based on two-site contrast[J]. Atmos Res. 2018;202:196-204.
  • 18. Gustafsson MER, Franzen LG. Dry deposition and concentration of marine aerosols in a coastal area, SW Sweden[J]. Atmos Environ. 1996;30(6):977-89.
  • 19. Castaneda A, Howland JJ, Corvo F, et al. Corrosion of steel reinforced concrete in the tropical coastal atmosphere of Havana City, Cuba[J]. Quim Nova. 2013;36(2):220-9.
  • 20. Meira GR, Padaratz IJ, Alonso C, et al. Effect of distance from sea on chloride aggressiveness in concrete structures in Brazilian coastal site[J]. Mater Constr. 2003;53(271-272):179-88.
  • 21. Meira GR, Andrade MC, Padaratz IJ, et al. Measurements and modelling of marine salt transportation and deposition in a tropical region in Brazil[J]. Atmos Environ. 2006;40(29):5596-607.
  • 22. Wu L, Li W, Yu X. Time-dependent chloride penetration in concrete in marine environments[J]. Constr Build Mater. 2017;152:406-13.
  • 23. Ohba R, Okabayashi K, Yamamoto M, et al. A method for predicting the content of sea salt particles in the atmosphere[J]. Atmos Environ A Gen Top. 1990;24(4):925-35.
  • 24. Meira GR, Pinto WTA, Lima EEP, et al. Vertical distribution of marine aerosol salinity in a Brazilian coastal area-The influence of wind speed and the impact on chloride accumulation into concrete[J]. Constr Build Mater. 2017;135:287-96.
  • 25. de Medeiros-Junior RA, de Lima MG, de Brito PC, et al. Chloride penetration into concrete in an offshore platform-analysis of exposure conditions[J]. Ocean Eng. 2015;103:78-87.
  • 26. Davies PJ, Crosbie RS. Mapping the spatial distribution of chloride deposition across Australia[J]. J Hydrol. 2018;561:76-88.
  • 27. Wai KM, Tanner PA. Wind-dependent sea salt aerosol in a Western Pacific coastal area[J]. Atmos Environ. 2004;38(8):1167-71.
  • 28. Marks R. Preliminary investigations on the influence of rain on the production, concentration, and vertical distribution of sea salt aerosol[J]. J Geophy Res. 1990;95(C12):22299-304.
  • 29. McKay WA, Garland JA, Livesley D, et al. The characteristics of the shore-line sea spray aerosol and the landward transfer of radionuclides discharged to coastal sea water[J]. Atmos Environ. 1994;28(20):3299-309.
  • 30. Lovett RF. Quantitative measurement of airborne sea-salt in the North Atlantic[J]. Tellus. 1978;30(4):358-64.
  • 31. Taylor NJ, Wu J. Simultaneous measurements of spray and sea salt[J]. J Geophy Res Ocean. 1992;97(C5):7355-60.
  • 32. Morcillo M, Chico B, Mariaca L, et al. Salinity in marine atmospheric corrosion: its dependence on the wind regime existing in the site[J]. Corros Sci. 2000;42(1):91-104.
  • 33. Piazzola J, Despiau S. Contribution of marine aerosols in the particle size distributions observed in Mediterranean coastal zone[J]. Atmos Environ. 1997;31(18):2991-3009.
  • 34. Meira GR, Andrade C, Alonso C, et al. Salinity of marine aerosols in a Brazilian coastal area-Influence of wind regime[J]. Atmos Environ. 2007;41(38):8431-41.
  • 35. Pham ND, Kuriyama Y, Kasai N, et al. A new analysis of wind on chloride deposition for long-term aerosol chloride deposition monitoring with weekly sampling frequency[J]. Atmos Environ. 2019;198:46-54.
  • 36. Takebe M, Ohya M, Hirose N, et al. Difference in precipitation rates of air-borne salts collected by the dry gauze method and the Doken tank method[J]. Corros Sci. 2010;52(9):2928-35.
  • 37. Katawaki K, Moriya S, Minosaku K. Property and analytical method for precipitation rate of air-born salt[J]. J Prestres Concret. 1985;52:68-73.
  • 38. International Organization for Standardization. Corrosion of Metals and Alloys: Corrosivity of Atmospheres: Measurement of Environmental Parameters Affecting Corrosivity Atmospheres[M]. ISO 9225, 2nd ed. 2012. p. 22.
  • 39. ASTM Committee G-140-02(2019) on Corrosion of Metals. Standard test method for determining atmospheric chloride deposition rate by wet candle method[M]. ASTM International, 2019. p. 4. https:doi.org/10.1520/G0140-02R19.
  • 40. Meira G R, Ferreira P R R, Freitas M S, et al. Behaviour of Surface Chloride Concentration in Concretes Subjected to Field Exposure in Marine Atmosphere Zone[C]//XV International Conference on Durability of Building Materials and Components (DBMC 2020). 2020. https://congress.cimne.com/DBMC2020/admin/files/fileabstract/a583.pdf.
  • 41. Meira GR, Andrade C, Alonso C, et al. Durability of concrete structures in marine atmosphere zones-The use of chloride deposition rate on the wet candle as an environmental indicator[J]. Cement Concr Compos. 2010;32(6):427-35.
  • 42. JIS Z. 2382-Determination of Pollution for Evaluation of Corrosivity of Atmospheres[J]. 98th ed. 1998. p. 23.
  • 43. Wattanapornprom R, Ishida T. Comprehensive numerical system for predicting airborne chloride generation and its ingress in concrete under actual environmental conditions[J]. J Adv Concr Technol. 2018;16(1):18-35.
  • 44. Pham ND, Okazaki S, Kuriyama Y, et al. Real-time aerosol chloride deposition measuring device using a conductivity sensor[J]. Atmos Environ. 2019;213:75766.
  • 45. Santucci RJ, Davis RS, Sanders CE. Atmospheric corrosion severity and the precision of salt deposition measurements made by the wet candle method[J]. Corros Eng, Sci Technol. 2022;57(2):147-58.
  • 46. Takebe M, Ajiki S, Ohya M, et al. Airborne Salt Precipitation Rate and Estimated Concentration by the Dry Gauze and Wet Candle Method[J]. InterJ Civil Eng. 2020;18(4):429-37.
  • 47. Boan ME, Rodriguez A, Abreu CM, et al. Unraveling the Impact of Chloride and Sulfate Ions Collection on Atmospheric Corrosion of Steel[J]. Corrosion. 2013;69(12):1217-24.
  • 48. Lee JS, Moon HY. Salinity distribution of seashore concrete structures in Korea[J]. Build Environ. 2006;41(10):1447-53.
  • 49. Castro P, De Rincon OT, Pazini EJ. Interpretation of chloride profiles from concrete exposed to tropical marine environments[J]. Cem Concr Res. 2001;31(4):529-37.
  • 50. Li C, Li K. Chloride ion transport in cover concrete under drying-wetting cycles: theory, experiment and modeling[J]. Journal of the chinese ceramic society. 2010;4:581-9.
  • 51. Fan H, Zhao T J, Xu H B. Chloride ingress in concrete of port structures[J]. Port & Waterway Eng. 2006. https://doi.org/10.16233/j.cnki.issn1002-4972.2006.04.013.
  • 52. Yang L, Cai R, Yu B. Formation mechanism and multi-factor model for surface chloride concentration of concrete in marine atmosphere zone[J]. China Civil Eng J. 2017;50(12):46-55.
  • 53. Bertolini L, Lollini F, Redaelli E. Durability design of reinforced concrete structures[J]. Proce Institution Civil Eng-Const Mater. 2011;164(6):273-82.
  • 54. Roy SK, Chye LK, Northwood DO. Chloride ingress in concrete as measured by field exposure tests in the atmospheric, tidal and submerged zones of a tropical marine environment[J]. Cem Concr Res. 1993;23(6):1289-306.
  • 55. Su L, Niu D, Huang D, et al. Chloride diffusion behavior and microstructure of basalt-polypropylene hybrid fiber reinforced concrete in salt spray environment[J]. Constr Build Mater. 2022;324: 126716.
  • 56. Liu J, Ou G, Qiu Q, et al. Chloride transport and microstructure of concrete with/without fly ash under atmospheric chloride condition[J]. Constr Build Mater. 2017;146:493-501.
  • 57. Shao W, Li J, Liu Y. Influence of exposure temperature on chloride diffusion into RC pipe piles exposed to atmospheric corrosion[J]. J Mater Civ Eng. 2016;28(5):04016002.
  • 58. Liu J, Liao C, Jin H, et al. Numerical and experimental research on the effect of rainfall on the transporting behavior of chloride ions in concrete[J]. Constr Build Mater. 2021;302: 124160.
  • 59. Huang D, Niu D, Su L, et al. Diffusion behavior of chloride in coral aggregate concrete in marine salt-spray environment[J]. Constr Build Mater. 2022;316: 125878.
  • 60. Zhou M, Liao J, An L. Effect of multiple environmental factors on the adhesion and diffusion behaviors of chlorides in a bridge with coastal exposure long-term experimental study[J]. J Bridg Eng. 2020;25(10):04020081.
  • 61. Safehian M, Ramezanianpour AA. Assessment of service life models for determination of chloride penetration into silica fume concrete in the severe marine environmental condition[J]. Constr Build Mater. 2013;48:287-94.
  • 62. Meira GR, Andrade C, Padaratz IJ, et al. Chloride penetration into concrete structures in the marine atmosphere zone-Relationship between deposition of chlorides on the wet candle and chlorides accumulated into concrete[J]. Cement Concr Compos. 2007;29(9):667-76.
  • 63. Costa A, Appleton J. Chloride penetration into concrete in marine environment-Part I: Main parameters affecting chloride penetration[J]. Mater Struct. 1999;32(4):252-9.
  • 64. Pack SW, Jung MS, Song HW, et al. Prediction of time dependent chloride transport in concrete structures exposed to a marine environment[J]. Cem Concr Res. 2010;40(2):302-12.
  • 65. Yang LF, Wang L, Yu B. Time-varying behavior and its coupling effects with environmental conditions and cementitious material types on surface chloride concentration of marine concrete[J]. Constr Build Mater. 2021;303: 124578.
  • 66. Zhang Y, Zhang Y, Huang J, et al. Time dependence and similarity analysis of peak value of chloride concentration of concrete under the simulated chloride environment[J]. Constr Build Mater. 2018;181:609-17.
  • 67. Liu J, Qiu Q, Xing F, et al. Permeation properties and pore structure of surface layer of fly ash concrete[J]. Materials. 2014;7(6):4282-96.
  • 68. Liu J, Tang K, Qiu Q, et al. Experimental investigation on pore structure characterization of concrete exposed to water and chlorides[J]. Materials. 2014;7(9):6646-59.
  • 69. Liu J, Qiu Q, Chen X, et al. Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress[J]. Corros Sci. 2016;112:364-72.
  • 70. Ben-Yair M. The effect of chlorides on concrete in hot and arid regions[J]. Cem Concr Res. 1974;4(3):405-16.
  • 71. Yuan Q, Shi C, De Schutter G, et al. Chloride binding of cement-based materials subjected to external chloride environment-a review[J]. Constr Build Mater. 2009;23(1):1-13.
  • 72. Suryavanshi AK, Swamy RN. Stability of Friedels salt in carbonated concrete structural elements. Cem Con Res. 1996;26:729-41.
  • 73. Nagataki S, Otsuki N, Wee TH, et al. Condensation of chloride ion in hardened cement matrix materials and on embedded steel bars[J]. Materials J. 1993;90(4):323-32.
  • 74. McPolin D, Basheer PAM, Long AE, et al. Obtaining progressive chloride profiles in cementitious materials[J]. Constr Build Mater. 2005;19(9):666-73.
  • 75. Yu H, Da B, Ma H, et al. Durability of concrete structures in tropical atoll environment[J]. Ocean Eng. 2017;135:1-10.
  • 76. Zuo S, Yuan Q, Huang T, et al. Microstructural changes of young cement paste due to moisture transfer at low air pressures[J]. Cem Concr Res. 2023;164:107061.
  • 77. Cao J, Jin Z, Ding Q, et al. Influence of the dry/wet ratio on the chloride convection zone of concrete in a marine environment[J]. Constr Build Mater. 2022;316:125794.
  • 78. Bao J, Zheng R, Wei J, et al. Numerical and experimental investigation of coupled capillary suction and chloride penetration in unsaturated concrete under cyclic drying-wetting condition[J]. J Build Eng. 2022;51:104273.
  • 79. Yuan Q, Shi C, De Schutter G, et al. Effect of temperature on transport of chloride ions in concrete[J]. Concrete Repair. 2008;1:159-60.
  • 80. Zhang Q, Wang F, Ling Y, et al. Investigation on Numerical Simulation of Chloride Transport in Unsaturated Concrete[J]. Adv Mater Sci Eng. 2021;17:7548071.
  • 81. Chengfang Y, Ditao N. Research on the Durability of Fly Ash Concrete in Marine Atmospheric Environment[J]. Bulletin Chinese Ceramic Society. 2012;31(1):1-6.
  • 82. Shen X, Liu Q, Hu Z, et al. Combine ingress of chloride and carbonation in marine-exposed concrete under unsaturated environment: A numerical study[J]. Ocean Eng. 2019;189:106350.
  • 83. Maheswaran T, Sanjayan JG. A semi-closed-form solution for chloride diffusion in concrete with time-varying parameters[J]. Mag Concr Res. 2004;56(6):359-66.
  • 84. Andrade C, Sagrera JL, Sanjuan MA. Several years study on chloride ion penetration into concrete exposed to Atlantic Ocean water[C]. Inter Rilem Work Test Model Chloride Ingress Concret. 2000;19:121-34.
  • 85. Lu Z Y. Artificial accelerated test method simulating chloride ingress environment[D]. Zhejiang University, 2007.
  • 86. Ehlen MA. Life-365TM Service Life Prediction ModelTM and computer program for predicting the service life and life-cycle cost of reinforced concrete exposed to chlorides[J]. Manual Version. 2014;2:554.
  • 87. Zhang H, Zhang W, Gu X, et al. Chloride penetration in concrete under marine atmospheric environment-analysis of the influencing factors[J]. Struct Infrastruct Eng. 2016;12(11):1428-38.
  • 88. Costa A, Appleton J. Chloride penetration into concrete in marine environment-Part II: Prediction of long term chloride penetration[J]. Mater Struct. 1999;32(5):354-9.
  • 89. Song HW, Lee CH, Ann KY. Factors influencing chloride transport in concrete structures exposed to marine environments[J]. Cement Concr Compos. 2008;30(2):113-21.
  • 90. Kassir MK, Ghosn M. Chloride-induced corrosion of reinforced concrete bridge decks[J]. Cem Concr Res. 2002;32(1):139-43.
  • 91. Takeda N. Experimental study on salt infiltration and rebar corrosion of concrete under various marine environmental conditions[J]. Japan Society Civil Eng. 1998;40(599):91-104.
  • 92. Yuan Q. Fundamental studies on test methods for the transport of chloride ions in cementitious materials[D].Central South University, 2009. (in Chinese).
  • 93. Tuutti K. Corrosion of steel in concrete[M]. Cement-och betonginst. 1982.https://www.diva-portal.org/smash/record.jsf?pid=diva2:960656.
  • 94. Bastidas-Arteaga E, Chateauneuf A, Sanchez-Silva M, et al. A comprehensive probabilistic model of chloride ingress in unsaturated concrete[J]. Eng Struct. 2011;33(3):720-30.
  • 95. Andrade C, Climent MA, De Vera G. Procedure for calculating the chloride diffusion coefficient and surface concentration from a profile having a maximum beyond the concrete surface[J]. Mater Struct. 2015;48(4):863-9.
  • 96. Maruya T, Matsuoka Y, Tangtermsirikul S. Modeling of chloride ion movement at the surface layer of hardened concrete[J]. Doboku Gakkai Ronbunshu. 1998;1998(585):79-95.
  • 97. Luping T, Gulikers J. On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete[J]. Cem Concr Res. 2007;37(4):589-95.
  • 98. Mangat PS, Molloy BT. Prediction of long term chloride concentration in concrete[J]. Mater Struct. 1994;27(6):338-46.
  • 99. Wang L, Ueda T. Mesoscale modeling of water penetration into concrete by capillary absorption[J]. Ocean Eng. 2011;38(4):519-28.
  • 100. Li D, Wang X, Li L. An analytical solution for chloride diffusion in concrete with considering binding effect[J]. Ocean Eng. 2019;191: 106549.
  • 101. Li J, Shao W. The effect of chloride binding on the predicted service life of RC pipe piles exposed to marine environments[J]. Ocean Eng. 2014;88:55-62.
  • 102. Zhang Y. Mechanics of Chloride Ions Transportation in Concrete [D]. Zhejiang University. 2008. (in Chinese).
  • 103. Ožbolt J, Oršanić F, Balabanić G. Modeling influence of hysteretic moisture behavior on distribution of chlorides in concrete[J]. Cement Concr Compos. 2016;67:73-84.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-721cc59e-8d92-4fbc-ba9d-6271922abd57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.