PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MinPlot: A mineral formula recalculation and plotting program for electron probe microanalysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
MinPlot is a MATLAB®-based mineral formula recalculation and compositional plotting program for electron microprobe analyses (EPMA). The program offers recalculation and structural formula assignment for 15 different mineral groups: Garnet, pyroxene, olivine, amphibole, feldspar, mica, staurolite, cordierite, chlorite, chloritoid, talc, epidote, titanite, spinel, and sulfides. MinPlot is a fast and easy to use command line program and requires no prior computer programming knowledge. Percent mass fractions of oxides are loaded from datafiles and the user answers simple prompts to select mineral type, normalization scheme, and plotting options. Recalculated mineral formulas are automatically saved as output files and plots may be further manually customized by the user prior to saving. MinPlot can perform thousands of calculations in seconds and the modular nature of the program makes it simple to add new calculation routines in future releases. Combined, these features make MinPlot a powerful and useful program for the processing of EPMA data.
Czasopismo
Rocznik
Strony
51--66
Opis fizyczny
Bibliogr. 59 poz., rys., tab., wykr.
Twórcy
  • Institut fûr Geowissenschaften, Goethe Universität, Frankfurt am Main, 61348
Bibliografia
  • Afifi, A.M., & Essene, E. (1988). MINFILE: A microcomputer program for storage and manipulation of chemical data on minerals. American Mineralogist, 73, 446-448.
  • Bernhardt, H.J. (2010). MINCALC-V5, a non EXCEL based computer program for general electron-microprobe mineral analyses data processing. IMA 20th General Meeting 2010, Acta Mineralogy and Petrology Abstract Series, 6, 869.
  • Brandelik, A. (2009). CALCMIN – an EXCELTM Visual Basic application for calculating mineral structural formulae from electron microprobe analyses. Computers & Geosciences, 35, 1540-1551. DOI: 10.1016/j.cageo.2008.09.011.
  • De Angelis, S.M.H., & Niell, O.K. (2012). MINERAL: A program foor the propagation of analytical uncertainty through mineral formula recalculations. Computers & Geosciences, 48, 134-142. DOI: 10.1016/j.cageo.2012.05.023.
  • Deditius, A.P., Reich, M., Kesler, S.E., Utsunomiya, S., Chryssoulis, S.L., Walshe, J., & Ewing, R.C. (2014). The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta, 140, 644-670. DOI: 10.1016/j.gca.2014.05.045.
  • Deditius, A.P., Utsunomiya, S., Renock, D., Ewing, R.C., Ramana, C.V., Becker, U., & Kesler, S.E. (2008). A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72, 2919-2933. DOI: 10.1016/j.gca.2008.03.014.
  • De Bjerg, S.C., Mogessie, A., & Bjerg, E. (1992). HYPER-FORM – A Hypercard® program for Macintosh® microcomputers to calculate mineral formulae from electron microprobe and wet chemical analysis. Computers & Geosciences, 30, 909-923. DOI: 10.1016/0098-3004(92)90006-D.
  • De Bjerg, S.C., Mogessie, A., & Bjerg, E. (1995). PASFORM – A program for IBM® PC or PC-compatible computers to calculate mineral formulae from electron microprobe and wet-chemical analysis. Computers & Geosciences, 21, 1187-1190. DOI: 10.1016/0098-3004(95)00049-6.
  • Deer, W.A., Howie, R.A., & Zussman, J. (2013). An introduction to the rock-forming minerals (3 ed.). London: Mineralogical Society of Great Britain and Ireland. DOI: 10.1180/DHZ.
  • De Obeso, J.C., & Kelemen, P.B. (2020). Major element mobility during serpentinization, oxidation and weathering of mantle peridotite at low temperatures. Philosophical Transactions of the Royal Society A, 378, 20180433. DOI: 10.1098/rsta.2018.0433.
  • Droop, G.T.R. (1987). A general equation for estimating Fe3+concentrations in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria. Mineral Magazine, 51, 431-437.
  • Esawi, E.K. (2004). AMPH-CLASS: An Excel spreadsheet for the classification and nomenclature of amphiboles based on the 1997 recommendations of the International Mineralogical Association. Computers and Geosciences, 30, 753-760. DOI: 10.1016/j.cageo.2004.05.007.
  • Forshaw, J.B., & Pattison, D.R.M. (2021). Ferrous/ferric (Fe2+/Fe3+) partitioning among silicates in metapelites. Contributions to Mineralogy and Petrology, 176, 1-26. DOI: 10.1007/s00410-021-01814-4.
  • Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E.V., & Hålenius, U. (2013). Nomenclature of the garnet supergroup. American Mineralogist, 98, 785-811. DOI: 10.2138/am.2013.4201.
  • Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., & Welch, M.D. (2012). Nomenclature of the amphibole supergroup. American Mineralogist, 97, 2031-2048. DOI: 10.2138/am.2012.4276.
  • Hawthorne, F.C., Ungaretti, L., Oberti, R., Caucia, F., & Callegari, A. (1993). The crystal chemistry of staurolite. I. Crystal structure and site populations. The Canadian Mineralogist, 31, 551-582.
  • Harlow, G.E. (1999). Interpretation of Kcpx and CaEs components in clinopyroxene from diamond inclusions and mantle samples. Proceedings of the 7th International Kimberlite Conference, 1, 321-331.
  • Holdaway, M.J., Mukhopadhyay, B., Dyar, M.D., Dutrow, B.L., Rumble, D., & Grambling, J.A. (1991). A new perspective on staurolite crystals chemistry: Use of stoichiometric and chemical end-members for a mole fraction model. American Mineralogist, 76, 1910-1991.
  • Knowles, C.R. (1987). A BASIC program to recast garnet end-members. Computers & Geosciences, 13, 655-659.
  • Kohn, M.J. (2017). Titanite petrochronology. Reviews in Mineralogy and Geochemistry, 83, 419-441. DOI: 10.2138/rmg.2017.83.13.
  • Lanari, P., Vidal, O., de Andrade, V., Dubacq, B., Lewin, E., Grosch, E.G., & Schwartz, S. (2014a). XMapTools: A MATLAB®-based program for electron microprobe X-ray image processing and geothermobarometry. Computers & Geosciences, 62, 227-240. DOI: 10.1016/j.cageo.2013.08.010.
  • Lanari, P., Wagner, T., & Vidal, O. (2014b). A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3-SiO2-H2O: Applications to P–T sections and geothermometry. Contributions to Mineralogy and Petrology, 167(968), 1-19. DOI: 10.1007/s00410-014-0968-8.
  • Lanari, P., Vho, A., Bovay, T., Airaghi, L., & Centrella, S. (2019). Quantitative compositional mapping of mineral phases by electron probe micro-analyser. Geological Society of London, Special Publications, 478, 39-63. DOI: 10.1144/SP478.4.
  • Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kish, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., & Youzhi, G. (1997). Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 219-246.
  • Li, X., Zhang, C., Behrens, H., & Holtz, F. (2020). Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos, 356-357: 105371. DOI: 10.1016/j.lithos.2020.105371.
  • Le Pioufle, A., & Canil, D. (2012). Iron in monticellite as an oxygen barometer for kimberlite magmas. Contributions to Mineralogy and Petrology, 163, 1033-1046. DOI: 10.1007/s00410-011-0714-4.
  • Locock, A.J. (2008). An Excel spreadsheet to recase analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Computers & Geosciences, 34(12), 1769-1780. DOI: 10.1016/j.cageo.2007.12.013.
  • Locock, A.J. (2014). An Excel spreadsheet to classify chemical analyses of amphibole following the IMA 2012 recommendations. Computers & Geosciences, 62, 1-11. DOI: 10.1016/j.cageo.2013.09.011.
  • Masci, L., Dubacq, B., Verlaguet, A., Chopin, C., de Andrade, V., & Herviou, C. (2019). A XANES and EPMA study of Fe3+ in chlorite: Importance of oxychlorite and implications for cation site distribution and thermobarometry. American Mineralogist, 104, 403-417. DOI: 10.2138/am-2019-6766.
  • Meija, J., Coplen, T.B., Berglund, M., Brand, W.A., De Bièvre, P., Gröning, M., Holden, N.E., Irrgeher, J., Loss, R.D., Walczyk, T., & Prohaska, T. (2016). Atomic weights of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 88, 265-291. DOI: 10.1515/pac2015-0305.
  • Mogessie, A., Tessadri, R., & Veltman, C.B. (1990). EMP-AMPH – a Hypercard program to determine the name of an amphibole from electron microprobe analysis according to the International Mineralogical Association scheme. Computers and Geosciences, 16, 309-330. DOI: 10.1016/0098-3004(90)90066-3.
  • Mogessie, A. (2001). AMPH-IMA97: a Hypercard program to determine the name of an amphibole from electron microprobe and wet chemical analyses. Computers and Geosciences, 27, 1171-1180. DOI: 10.1016/S0098-3004(01)00034-6.
  • Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K., & Gottardi, G. (1989). Nomenclature of pyroxenes. Mineralogical Magazine, 52, 535-550. DOI: 10.1180/minmag.1988.052.367.15.
  • Oberti, R., Ungretti, L., Cannnillo, E., & Hawthorne, F.C. (1992). The behaviour of Ti in amphiboles. I. Four- and six-coordinate Ti in richterite. European Journal of Mineralogy, 4, 425-439.
  • Piccardo, G.B., & Guarnieri, L. (2011). Gabbro-norite cumulates from strongly depleted MORB melts in the Alpine-Apennine ophiolites. Lithos, 124, 200-214. DOI: 10.1016/j.lithos.2011.01.017.
  • Qian, G., Brugger, J., Testemale, D., Skinner, W., & Pring, A. (2013). Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions. Geochimica et Cosmochimica Acta, 100, 1-10. DOI: 10.1016/j.gca.2012.09.034.
  • Rao, D.R., & Rao, T.V.S. (1996). AMPH: A program for calculating formulae for assigning names to the amphibole group of minerals. Computers & Geosciences, 22, 931-933. DOI: 10.1016/S0098-3004(96)00018-0.
  • Richard, L.R., & Clarke, D.B. (1990). AMPHIOBOL: A program for calculating structural formulae and for classifying and plotting chemical analyses of amphiboles. American Mineralogist, 75, 421-423.
  • Rock, N.M.S., & Carroll, G.W. (1990). MINTAB: A general-purpose mineral recalculation and tabulation program for Macintosh. American Mineralogist, 75, 424-430.
  • Rock, N.M.S. (1987). A FORTRAN program for tabulating and naming amphibole analyses according to the International Mineralogical Association scheme. Mineralogy and Petrology, 37, 79-88. DOI: 10.1007/BF01163159.
  • Rock, N.M.S., & Leake, R.E. (1984). The International Mineralogical Association amphibole nomenclature scheme: Computerization and its consequences. Mineralogical Magazine, 48, 211-227.
  • Schumacher, J.C. (1991). Empirical ferric iron corrections: Necessity, assumptions, and effects on selected geothermobarometers. Mineralogical Magazine, 55, 3-18. DOI: 10.1180/minmag.1991.055.378.02.
  • Spear, F.S., & Kimball, K.L. (1984). RECAMP – A FORTRAN IV program for estimating Fe3+ contents in amphiboles. Computers in Geology, 10, 317-325. DOI: 10.1016/0098-3004(84)90029-3.
  • Spreitzer, S.K., Walters, J.B., Cruz-Uribe, A.M., Williams, M.L., Yates, M.G., Jercinovic, M.J., Grew, E.S., & Carson, C.J. (2021). Monazite petrochronology of polymetamorphic granulite-facies rocks of the Larsemann Hills, Prydz Bay, East Antarctica. Journal of Metamorphic Geology, 39, 1205-1228. DOI: 10.1111/jmg.12607.
  • Sturm, R. (2002). PX-NOM – An interactive spreadsheet program for the computation of pyroxene analyses derived from the electron microprobe. Computers & Geosciences, 28, 473-483. DOI: 10.1016/S0098-3004(01)00083-8.
  • Tiepolo, M., Zanetti, A., & Oberti, R. (1999). Detection, crystal-chemical mechanisms and petrological implications of [6]Ti4+ partitioning in pargasite and kaersutite. European Journal of Mineralogy, 11, 345-354. DOI: 10.1127/ejm/11/2/0345.
  • Tindle, A.G., & Webb, P.C. (1994). Probe-AMPH – A spreadsheet program to classify microprobe-derived amphibole analyses. Computers & Geosciences, 20, 1201-1228. DOI: 10.1016/0098-3004(94)90071-X.
  • Xu, J., Zhang, G.B., Marschall, H.R., Walters, J.B., Liu, S.Q., Lü, Z., Zhang, L.F., Hu, H., & Li, N. (2022). Boron isotopes of white mica and tourmaline in an ultra-high pressure metapelite from the western Tianshan, China: Dehydration and metasomatism during exhumation of subducted ocean-floor sediments. Contributions to Mineralogy and Petrology, 177(46), 1-16. DOI: 10.1007/s00410-022-01916-7.
  • Yavuz, F. (2003a). Evaluating micas in petrologic and metallogenic aspect: I – definitions and structure of the computer program MICA+ Computers & Geosciences, 29, 1203-1213. DOI: 10.1016/S0098-3004(03)00142-0.
  • Yavuz, F. (2003b). Evaluating micas in petrologic and metallogenic aspect: II – applications using the computer program MICA+. Computers & Geosciences, 29, 1215-1228. DOI: 10.1016/S0098-3004(03)00143-2.
  • Yavuz, F. (2007). WinAmphcal: A windows program for the IMA04 amphibole classification. Geochemistry, Geophysics, Geosystems, 8, Q01004. DOI: 10.1029/2006GC001391.
  • Yavuz, F. (2013). WinPyrox: A Windows program for pyroxene calculation classification and thermobarometry. American Mineralogist, 98, 1338-1359. DOI: 10.2138/am.2013.4292.
  • Yavuz, F., Kumral, M., Karakaya, N., Karakaya, M.C., & Yildirim, D.K. (2015). A windows program for chlorite calculation and classification. Computers & Geosciences, 81, 101-113. DOI: 10.1016/j.cageo.2015.04.011.
  • Yavuz, F., & Yildirim, D.K. (2020). WinGrt, a Windows program for garnet supergroup minerals. Journal of Geosciences, 65, 71-95. DOI: 10.3190/jgeosci.303.
  • Walters, J.B., Cruz-Uribe, A.M., & Marschall, H.R. (2019). Isotopic compositions of sulfides in exhumed high-pressure terranes: Implications for sulfur cycling in subduction zones. Geochemistry, Geophysics, Geosystems, 20, 2019GC008374. DOI: 10.1029/2019GC008374.
  • Walters, J.B., Cruz-Uribe, A.M., Marschall, H.R., & Boucher, B. (2021). The role of sulfides in the chalcophile and siderophile element budget of the subducted oceanic crust. Geochimica et Cosmochimica Acta, 304, 191-215. DOI: 10.1016/j.gca.2021.04.016.
  • Walters, J.B., Cruz-Uribe, A.M., Song, W.J., Gerbi, C., & Biela, K. (2022). Strengths and limitations of in situ U-Pb titanite petrochronology in polymetamorphic rocks: An example from western Maine, USA. Journal of Metamorphic Geology, 40, 1043-1066. DOI: 10.1111/jmg.12657.
  • Walters, J.B., & Kohn, M.J. (2017). Protracted thrusting followed by late rapid cooling of the Greater Himalayan Sequence, Annapurna Himalaya, Central Nepal: Insights from titanite petrochronology. Journal of Metamorphic Geology, 35, 897-917. DOI: 10.1111/jmg.12260.
  • Warr, L.N. (2021). IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291-320. DOI: 10.1180/mgm.2021.43
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7217d85d-2123-4eb3-a28e-eca497ca7f41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.