PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interpretation of CPT and SDMT tests for Lublin loess soils on the example of Cyprysowa research site

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an example of interpretation of in situ tests, CPT static sounding and seismic Marchetti dilatometer tests (SDMT). The studies were carried out on loess soils in Lublin. Four CPT tests and four SDMT seismic tests were performed. The method of deriving geotechnical parameters from in situ testing was described. In particular, the formulas for calculating the constrained modulus based on the cone resistance qc were analysed. Some of the parameters were interpreted with the use of proposed formulas. Values of deformation parameters determined with various methods for different strain ranges were compared.
Słowa kluczowe
Rocznik
Strony
63--72
Opis fizyczny
Bibliogr. 28 poz., fig.
Twórcy
  • Department of Geotechnical Engineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology Poland
Bibliografia
  • 1. Nepelski K. et al., “Comparative analysis of the CPT results obtained with the use of electric and mechanical penetrometer cone”, Proceedings of the XVII ECSMGE-2019, (2019). https://doi.org/10.32075/17ECSMGE-2019-0877
  • 2. PN-EN ISO 22476-12, Geotechnical investigation and testing - Field testing - Part 12: mechanical cone penetration test (CPTM), 2013.
  • 3. PN-EN 1997-2, Eurocode 7: Geotechnical design. Part 2: Ground investigation and testing, 2009.
  • 4. PN-B 04452, Geotechnica. Field Testing, 2002.
  • 5. Młynarek Z. et al., "Soil classification by means of CPTU" in Proceedings of XI Polish Conference on Soils Mechanics and Foundation Engineering, Gdańsk, 1997, pp.119-126
  • 6. Sikora Z., Sondowanie statyczne: metody i zastosowanie w geoinżynierii. Warsaw: WNT, 2005.
  • 7. Nepelski K. et al., “The analysis of consistency evaluation of the loess in Lublin based on CPT tests ”, Budownictwo i Architektura, vol. 15, no. 4, (2016), pp. 183–194. https://doi.org/10.24358/Bud-Arch_16_154_18
  • 8. Frankowski Z. et al., “Geological and geotechnical problems of loess deposits from south-eastern Poland”, in Proc. of the International Geotechnical Conference “Geotechnical challenges in megacities”, 2010, vol. 2, pp. 546–553.
  • 9. Sanglerat G., The penetrometer and soil exploration. Amsterdam: Elsevier, 1972.
  • 10. Ciloglu F. et al., “CPT-based compressibility assessment of soils”, International Symposium on Cone Penetration Testing, no. 2009, (2014), pp. 629–636.
  • 11. Senneset K. et al., “Strength and deformation parameters from cone penetration tests”, in Proceedings of the 2nd Europen Symposium on Penetration Testing, 1982, pp. 863-870.
  • 12. Kulhawy F. H. and Mayne P. H., “Manual on estimating soil properties for foundation design”, New York, 1990.
  • 13. Wierzbicki J. and Mańka M., “Constrained and Shear modulus of loess from CPTU i SDMT”, Inżynieria Morska i Geotechnika, vol. 36, no. 3, (2015), pp. 193–199.
  • 14. Młynarek Z. et al., “Geotechnical parameters of loess soils from CPTU and SDMT”, in International Conference on the Flat Dilatometer DMT’15, 2015, pp. 481–489.
  • 15. Frankowski Z. and Pietrzykowski P., “Displacement parameters of loesslike soils from southeastern Poland”, Przegląd Geologiczny, vol. 65, no. 10, (2017), pp. 832–839.
  • 16. Atkinson J. and Sallfors G., “Experimental determination of soil properties”, in Proc. 10th ECSMFE, vol. 3, no. Florence, 1991, pp. 915-956.
  • 17. Nepelski K., “Numerical modelling of the behaviour of a structure situated on a loess subsoil”, doctoral thesis, 2019.
  • 18. Pisarczyk S., Gruntoznawstwo inżynierskie. Warsaw: PWN, 2015.
  • 19. Nepelski K. and Rudko M., “Identification of geotechnical parameters of Lublin loess subsoil based on CPT tests ”, Scientific Review. Engineering and Environmental Sciences, vol. 27, no. 2, (2018), pp. 186–198. https://doi.org/10.22630/PNIKS.2018.27.2.18
  • 20. Lechowicz Z. and Szymański A., Deformations and stability of embankments on organic soils part I. Research methodology. Warsaw: SGGW, 2002.
  • 21. Marchetti S., “In situ tests by flat dilatometer”, Journal of the geotechnical engineering division, vol. 105, no. III, (1980), pp. 299–321.
  • 22. Galas P., “Determination of undrained shear strength based on seismic dilatometer test SDMT ”, doctoral thesis, 2013.
  • 23. Mayne P. and Martin G., “Commentary on Marchetti flat dilatometer correlations in soils”, ASTM Geotechnical Testing Journal, vol. 21, (1998), pp. 222–239.
  • 24. Marchetti S., “Some 2015 Updates to the TC16 DMT Report 2001”, in The 3rd International Conference on the Flat Dilatometer, 2015, pp. 43–65.
  • 25. Marchetti S. et al., “The flat dilatometer test (DMT) in soil investigations”, in International Conference On In situ measurement of Soil Properties, 2001, pp. 95–131.
  • 26. Lechowicz Z. et al., “Use of SDMT for evaluating geotechnical parameters of organic soils”, in 5 th International Workshop of CPT and DMT in soft clays and organic soils, 2014, pp. 07 – 118.
  • 27. Rabarijoely S., “Evaluation of shear modulus using dilatometer test (DMT) of Pliocene clays at Stegny research site”, Scientific Review. Engineering and Environmental Sciences, vol. 86, no. 63, (2014), pp. 77–86.
  • 28. Młynarek Z., “Site investigation and mapping in urban area”, in Proc. XIV European Conference on Soil Mechanics and Geotechnical Engg. vol. 1, 2007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7215031b-4625-41ca-aacb-b0dbae569650
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.