PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Philosophy of geotechnical design in civil engineering – possibilities and risks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The European standards, developed extensively over last 30 years, are driven by the need for continuous evolution and their Authors’ pursuit of better EU-wide quality in civil engineering – combining safety, economy, and sustainable development. The adoption of theory of reliability as the basis for design has played a major role in shaping current geotechnical practice. However, it requires from practitioners a greater understanding of underlying uncertainties. Furthermore, a number of alternative approaches, not generally used in structural design, are also allowed, as some situations in geotechnical engineering require an individual approach. Moreover, the current trends in geoengineering increase the importance of risk assessment and management. The paper presents general philosophy guiding the geotechnical design and pointing to some of the ideas introduced by Eurocode 7 and its requirements, in relation to preexisting practice of geotechnical design in civil engineering.
Rocznik
Strony
289--306
Opis fizyczny
Bibliogr. 90 poz., rys., wykr., tab.
Twórcy
autor
  • Building Research Institute, Warsaw, Poland
autor
  • Building Research Institute, Warsaw, Poland
Bibliografia
  • [1] G.B. Baecher and J.T. Christian, Reliability and Statistics in Geotechnical Engineering, John Wiley & Sons, (2003).
  • [2] R.B. Peck, “Advantages and limitations of the observational method in applied soil mechanics”, Geotechnique 19, No. 2, 171‒187 (1969).
  • [3] L. Czarnecki and J.J. Sokołowska, “Material model and revealing the truth”. Bull. Pol. Ac.: Tech. 63 (1), 7–14 (2015).
  • [4] L. Czarnecki and D. Van Gemert, “Scientific basis and rules of thumb in civil engineering: conflict or harmony?”, Bull. Pol. Ac.:Tech. 64 (4), 665‒673 (2016).
  • [5] E.M. Rogers, Diffusion of Innovation, 5th Edition, Simon and Schuster (2003).
  • [6] M. Lefik, “Some aspects of application of artificial neural network for numerical modeling in civil engineering”. Bull. Pol. Ac.: Tech. 61 (1), 39‒50 (2013).
  • [7] L. Czarnecki and D. Van Gemert, “Civil Engineering – Ongoing Technical Research. Part I”, Bull. Pol. Ac.:Tech. 64 (4), 661‒663 (2016).
  • [8] L. Czarnecki and D. Van Gemert, “Innovation in construction materials engineering versus sustainable development”, Bull. Pol. Ac.:Tech. 65 (6), 765‒771 (2017).
  • [9] B. Simpson and F. Tatsuoka, “Geotechnics: the next 60 years”, Geotechnique 58, No. 5, 357‒368 (2008).
  • [10] ISO 4356. Bases for the design of structures – Deformations of buildings at the serviceability limit states (1977).
  • [11] J.T. Christian, “Geotechnical Engineering Reliability: How Well Do We Know What We Are Doing?”, J. Geotech. Geoenviron. Eng., Vol. 130, No. 10 (2004).
  • [12] EN 1990: Eurocode – Basis of structural design, CEN (2004).
  • [13] EN 1997‒1: Eurocode 7: Geotechnical design – Part 1: General rules, CEN (2008).
  • [14] prEN 1990: Eurocode: Basis of structural and geotechnical design (final draft, 2018‒05‒09), CEN (2018).
  • [15] prEN 1997-1: Eurocode 7: Part 1 – General rules (final draft, 2018-05-04), CEN (2018).
  • [16] M.D. Bolton, “Limit state design in geotechnical engineering”, Ground Eng., 14(6), 39–46 (1981).
  • [17] Joint TC205/TC304 Working Group. Discussion of statistical/reliability methods for Eurocodes – Final Report, ISSMGE (2017).
  • [18] M. Sànchez-Silva and D.V. Rosowsky, “Risk, reliability and sustainability in the developing world.” Proc. ICE – Structures and Buildings, 161(4): 189–197 (2008).
  • [19] J.N. Shirlaw and D. Wen,. “Checking and reviewing the output from numerical analysis”, Proc. of Underground Construction in Soft Ground, Singapore (2005).
  • [20] G.G. Meyerhof, “Safety factors in soil mechanics.” Can. Geotech. J. 7(4), 349–355 (1970).
  • [21] G.A. Fenton, F. Naghibi, D. Dundas, R.J. Bathurst, and D.V. Griffiths, “Reliability-based geotechnical design in 2014 Canadian Highway Bridge Design Code”, Can. Geotech. J. 53, 236‒251 (2016).
  • [22] K. Terzaghi and R.B. Peck, Soil mechanics in engineering practice, Wiley, New York (1948).
  • [23] M.Th. Van Staveren, Uncertainty and ground conditions – a risk management approch, Elsevier, Oxford, 2006.
  • [24] F.H. Kulhawy and K.K. Phoon, “Observations on geotechnical reliability-based design development in North America”, Found. Design Code and Soil Invest. In view of Inter. Harmonization and Performance, (2002).
  • [25] S. Lacasse and F. Nadim, “Risk and Reliability in Geotechnical Engineering”, Int. Conf. on Case Histories in Geotech. Eng., St. Louis, Missouri (1998).
  • [26] B. Simpson, J.W. Pappin, and D.D. Croft. “An approach to limit state calculations in geotechnics.” Ground Engineering 14(6): 21‒28 (1981).
  • [27] B. Simpson, “Partial factors: where to apply them?”. Int.Workshop on Limit State Design in Geot. Eng., Melbourne, Australia (2000).
  • [28] C. Bauduin, “Assesment of model factors and reliability index for ULS design of pile foundations”, Proc. of 4th Inter. Geotech. Sem. on Deep Found.on Bored and Auger Piles, Ghent (2003).
  • [29] P.J. Vardanega and M.D. Bolton, “Design of Geostructural Systems”, ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng. 2(1) (2016).
  • [30] W.S. Forrest and T.L.L. Orr, “Reliability of shallow foundations designed to Eurocode 7”, Georisk, Vol. 4, No. 4, 186‒207 (2010).
  • [31] T.L.L. Orr, “Defining and selecting characteristic values of geotechnical parameters for designs to Eurocode 7”, Georisk, Vol. 11, No. 1, 103‒115 (2017).
  • [32] J.K. Vrijling, T. Schweckendiek, and W. Kanning, “Safety standards of flood defences”, Geotechnical Safety and Risk, Proceedings of ISGSR, 67‒84, Munich, (2011).
  • [33] P.J. Vardanega, E. Kolody, S.H Pennington, P.R.J. Morrison, and B. Simpson, “Bored pile design in stiff clay. I: codes of practice.” Proc. ICE Geotech. Eng., 165(4): 213–232 (2012).
  • [34] ISO 13824. Bases of design for structures – General principles on risk assessment of systems involving structures (2009).
  • [35] S.D. Eskesen, P. Tengborg, J. Kampmann, and T.H. Veicherts, “Guidelines for tunneling risk management: International Tunneling Association, Working Group no. 2”. Tunneling and Underground Space Technology, Vol. 19, pp. 217‒237 (2004).
  • [36] G.A. Fenton, F. Haghibi, and D.V. Griffiths, “On unified theory for reliability-based geotechnical design”, Comp. and Geotech. 78, 110‒122 (2016).
  • [37] V. Janssens, D.W. O’Dwyer, and M.K. Chryssanthopoulos, “Building Failure Consequences”, Proc. of the Final Conf. of COST Action TU0601, Czech Technical University (2011).
  • [38] B. Simpson, “Eurocode 7 and Robustness”, GeoRisk 2017 Conf., Denver (2017).
  • [39] H.G. Poulos, “An Approach for Assessing Geotechnical Reduction Factors for Pile Design”, Proc. of the 9th Australia New Zeland Conf. on Geomechanics, Vol. 1, 109‒115, Auckland, New Zeland (2004).
  • [40] AS 2159: Australian standard – Piling – Design and installation, Standards Australia (2009).
  • [41] S6‒14: Canadian Highway Bridge Design Code, CSA (2014).
  • [42] CEN-TC250 N1239 CENTC250 Position Paper on Enhancing ease of use of the Structural Eurocodes, CEN (2015).
  • [43] T.D. O’Rourke, “Geohazards and large, geographically distributed systems”, Geotechnique 60, No. 7, 505‒543 (2010).
  • [44] S. Woliński, “Defining of the structural robustness”. Bull. Pol. Ac.: Tech. 61 (1), 137–144 (2013).
  • [45] ISO 2394: General principles on reliability for structures (2015).
  • [46] S. Khoshnevisan, W. Gong, L. Wang, and C.H. Juang, “Robust design in geotechnical engineering – an update”, Georisk, Vol. 8, No. 4, 217‒234 (2014).
  • [47] P.W. Rowe, “12th Rankin Lecture: The relevance of soil fabric to site investigation practice”, Geotechnique 22, No. 2 (1972).
  • [48] T.W. Lambe, “Amuay landslides”, Proc. of 11th Int.Conf. on Soil Mech. and Found. Eng., A.A. Balkema:137‒158, San Francisco (1985).
  • [49] H. Stille and A. Palmstrom, “Practical use of the concept of geotechnical categories in rock engineering”. Tunneling and Underground Space Technology, Vol. 79, pp. 1‒11 (2018).
  • [50] Y. Honjo, “Challenges in Geotechnical Reliabilit Based Design”, Proc. of 3rd Int. Symp. On Geotech. Safety and Risk, Munich (2011).
  • [51] P. Lumb. “The variability of natural soils.” Can. Geotech. J., 3(2): 74–97 (1966).
  • [52] P. Lumb. “Safety factors and the probability distribution of soil strength.” Can. Geotech. J., 7(3): 225–242 (1970).
  • [53] E.H. Vanmarcke. “Probabilistic modelling of soil profiles.” J. Geotech. Eng., 103(11): 1227–1246 (1977).
  • [54] S. Lacasse and F. Nadim, “Probabilistic geotechnical analysis for offshore facilities”, Georisk, Vol. 1, No. 1, 21‒42 (2007).
  • [55] E. Szewczak and A. Piekarczuk, “Performance evaluation of the construction products as a research challenge. Small error – big difference in assessment?”. Bull. Pol. Ac.: Tech. 64 (4), 675‒686 (2016).
  • [56] J. Ching and K.K. Phoon, “Transformations and correlations among some clay parameters – the global database”, Can. Geotech. J. 51: 663‒685 (2014).
  • [57] T. Godlewski and T. Szczepański, “Determination of soil stiffness parameters using in-situ seismic methods insight in repeatability and methodological aspects”, Proc. of ISC’4, Porto de Galinhas-Pernambuco, Brasil, CRS Press, vol.1, p. 441‒446, (2012).
  • [58] T. Godlewski and M. Wszędyrówny-Nast, “Correlations of regional geotechnical parameters on the basis of CPTU and DMT tests”, Proceeding’s of The 13th Baltic Sea Geotechnical Conference, 22‒24.09.2016r. Wilno, Litwa, Vilnius Gediminas Technical University Press, s. 22‒27, (2016).
  • [59] J. Ching and K.K. Phoon, “Correlations among some clay parameters – the multivariate distribution”, Can. Geotech. J. 51: 686‒704 (2014).
  • [60] EN 1992: Eurocode 2 – Design of concrete structures, CEN (2004).
  • [61] EN 1993: Eurocode 3 – Design of steel structures, CEN (2004).
  • [62] EN 1997‒2: Eurocode 7: Geotechnical design – Part 2: Ground investigation and testing, CEN (2007).
  • [63] K.K. Phoon and F.H. Kulhawy, “Characterization of geotechnical variability”, Can. Geotech. J. 36, 612‒624 (1999).
  • [64] D.G. Fredlund and H. Rahardjo, Soil Mechanics for Unsaturated Soils, Wiley (1993).
  • [65] E.E. Alonso and S. Olivella, “Unsaturated Soil Mechanics Applied to Geotechnical Problems.” Proc. 4th Int. Conf. Unsaturated Soils, Carefree, Arizona (2006).
  • [66] B.C. O’Kelly and T.L.L. Orr, “Effective-stress strength of peat in triaxial compression”, Proc. of ICE Geotechnical Engineering 167, GE5, 417‒420 (2014).
  • [67] M. Huber, F. Marconi, and M. Moscatelli, “Risk-based characterisation of an urban building site”, Georisk, Vol. 9, No. 1, 49‒56 (2015).
  • [68] M.B. Jaksa, J.S. Goldsworthy, G.A. Fenton, W.S. Kaggawa, D.V. Griffiths, Y.L. Kuo, and H.G. Poulos, “Towards reliable and effective site investigation”, Geotechnique 55, No. 2, 109‒121 (2005).
  • [69] T.W. Lambe, “Predictions in soil engineering”. Geotechnique 23, No. 2, 149‒202 (1973).
  • [70] Y. Honjo, “General vs. local reliability based design in geotechnical engineering.”, Proc. of the 4th Asian-Pacific Symp. on Str. Reliab. and its Applic., 2008.
  • [71] H. Akaike, “Information Theory and an Extension of the Maximum Likelihood Principle”, the 2nd Inter. Symo. on Infor. Theory, 267‒281, Budapest (1973).
  • [72] S. Burlon, R. Frank, F. Baguelin, J. Habert, and S. Legrand, ”Model factor for the bearing capacity of piles from pressuremeter test results – Eurocode 7 approach”; Géotechnique 64, No. 7, pp. 513‒525 (2014).
  • [73] M. Mitew-Czajewska, “Parametric study of deep excavation in clays”, Bull. Pol. Ac.: Tech., 66 (5), 747‒754 (2018).
  • [74] W. Bogusz and T. Godlewski, “Predicting the impact of underground constructions on adjacent structures as an element of investment risk assessment”, Proc. XVI Danube European Conf. Geotech. Eng., Skopje, R. Macedonia (2018).
  • [75] D.M. Zhang, K.K. Phoon, H.W. Huang, and Q.F. Hu, “Characterization of model uncertainty for cantilever deflections in undrained clay”, ASCE J. Geotech. Geoenviron. Eng., 141 (2015).
  • [76] K. Lesny, A.O. Akbas, W. Bogusz, S. Burlon, G. Vessia, and L. Zhang, “Evaluation of the Uncertainties Related to the Geotechnical Design Method and Its Consideration in Reliability Based Design”, GeoRisk 2017: Reliability-Based Design and Code Developments, GSP 283, ASCE. (2017).
  • [77] M. Jamiolkowski, “Soil mechanics and the observational method: challenges at the Zelazny Most copper tailings disposal facility”, Geotechnique 64, No. 8, 590–619, (2014).
  • [78] EN 50341‒1 Overhead electrical lines exceeding AC 1 kV – Part 1: General requirements – Common specifications. CENELEC (2012).
  • [79] A.W. Skempton and D.H. MacDonald, “Allowable settlement of buildings.” ICE Proc. Eng. Div., 5(6), 727–768 (1956).
  • [80] D.E. Polshin and R.A. Tokar, “Maximum, allowable nonuniform settlement of structures.” Proc. 4th ICSMFE, Vol. 1, 402–405 (1957).
  • [81] J.B. Burland and C.P. Wroth. “Allowable and differential settlements of structures.” Settlements of Structures, Pentech Press, London, 611–654 (1974).
  • [82] M.D. Boscardin and E.J. Cording, “Building response to excavation-induced settlement”, ASCE J. of Geotech. Eng., Vol. 115, No. 1, 1‒21 (1989).
  • [83] H.G. Poulos, J.P. Carter, and J.C. Small, “Foundations and retaining structures—Research and practice.” Proc., 15th ICSMGE, Vol. 4, , 2527–2606 (2001).
  • [84] prEN 1998‒5: Eurocode 8: Earthquake resistance design of structures (1st draft, 2018‒05‒22), CEN (2017).
  • [85] A.S. Osman and M.D. Bolton, “Simple plasticity-based prediction of the undrained settlement of shallow circular foundations on clay.” Géotechnique 55(6): 435–447 (2005).
  • [86] A.S. Osman and M.D. Bolton. “Ground movement predictions for braced excavations in undrained clay.” J. Geotech. Geoenviron. Eng. 132(4): 465‒477 (2006).
  • [87] S.Y. Lam and M.D. Bolton, Energy conservation as a principle underlying mobilizable strength design for deep excavations. J.Geotech. Geoenviron. Eng., 137(11): 1062–1074 (2011).
  • [88] P.J. Vardanega, M. Williamson, and M.D. Bolton, “Bored pile design in stiff clay. II: Mechanisms and uncertainty.” Proc. ICE Geotech. Eng., 165(4): 233–246 (2012).
  • [89] C. Read, “Logic: Deductive and Inductive,” London: Simkin, Marshall (1920).
  • [90] H. Petroski. “Failure as source of engineering judgment: Case of John Roebling.” ASCE Journal of Performance of Constructed Facilities 7(1): 46‒58 (1993).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7214802d-a20a-47da-a4fe-55800e34cc9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.