Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The electrical properties and behaviour in constant magnetic field of fourfold expanded GaSe matrix intercalated with SmCl 3 guest were investigated by means of impedance spectroscopy and cyclic voltammetry. It was determined that the synthesized GaSe< SmCl 3> clathrate of 4-fold expansion demonstrates the coexistence of mechanisms of generation, transformation and accumulation of electric energy on a quantum level. These mechanisms are driven from external sources of magnetic, thermal and electric field without Faradaic reactions. Therefore, investigated GaSe< SmCl 3> structure is of great attraction in multivoltaics as a prototype of new class of materials. Quantum mechanical model of electro motive force of spin nature is proposed. The main focus of work lies in the prospects of synthesized clathrates for the development of power nanosources and gyrator-free delay nanolines controlled by means of magnetic field.
Rocznik
Tom
Strony
art. no. e136726
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland
- Lviv Polytechnic National University, Bandera 12, Lviv, 79013, Ukraine
autor
- Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland
autor
- Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland
autor
- Ivan Franko Lviv National University, Cyril and Methodius 8, Lviv, 79005, Ukraine
autor
- Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland
autor
- Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland
- Lviv Polytechnic National University, Bandera 12, Lviv, 79013, Ukraine
Bibliografia
- [1] M.J. Fiebig, “Revival of the magnetoelectric effect”, Phys. D Appl. Phys. 38, R123–R152 (2005).
- [2] D.I. Khomskii, “Multiferroics: Different ways to combine magnetism and ferroelectricity”, J. Magn. Magn. Mater. 306, 1–8 (2006).
- [3] W. Eerenstein, N.D. Mathur, and J.F. Scott, “Multiferroic and magnetoelectric materials”, Nature. 442, 759–765 2006).
- [4] Y. Tokura, “Materials science. Multiferroics as quantum electromagnets”, Science 312(5779), 1481–1482 (2006).
- [5] R. Ramesh and N.A. Spaldin, “Multiferroics: progress and prospects in thin films”, Nature Mater. 6(1), 21–29 (2007).
- [6] S.Cheong and M. Mostovoy, “Multiferroics: a magnetic twist for ferroelectricity”, Nature Mater. 6(1) 13–20 (2007).
- [7] A.P. Pyatakov and A.K Zvezdin, “Magnetoelectric and multiferroic media”, Phys.-Usp. 55(6), 557-581 (2012).
- [8] A.W. Hübler and O. Onyeama, “Digital quantum batteries: Energy and information storage in nanovacuum tube arrays”, Wiley Periodicals Inc. Complexity. 15(5), 48–5 (2010).
- [9] A. Ilyanok, “Quantum Supercapacitor”, US Patent No. 7,193,261 B26, Mar. 20, 2007.
- [10] N.H. Pham, O. Shinobu, T. Masaaki, E. Barnes Stewart, and M. Sadamichi, “Electromotive force and huge magnetoresistance in magnetic tunnel junctions”, Nature 458, 489–493 (2009).
- [11] S. Datta, “Proposal for a “spin capacitor”, Appl. Phys. Lett. 87(1), 013115(1–3) (2005).
- [12] T. Popławski, I. Bordun, and A. Pidluzhna, “Thermo-, magnetoand photo- dependent electrical properties of hierarchical InSe<β-CD<FeSO4 >> supramolecular compound”, Bull. Pol. Acad. Sci. Tech. Sci. 68(43), 361–366 (2020).
- [13] Y. Wu, H.-R. Fuh, D. Zhang, C.Ó. Coileáin, H. Xu, J. Cho, and H.-C. Wu, “Simultaneous large continuous band gap tunability and photoluminescence enhancement in GaSe nanosheets via elastic strain engineering”, Nano Energy 32, 157–164 (2017).
- [14] R.M.A. Lies, “III – VI Compounds”, in Preparation and crystal growth material with layered structure, pp 225–254, ed. R.M.A. Lies, D. Retdel, Publishing Company, Dordrecht-Boston, 1977.
- [15] R.H. Friend and A.D. Yoffe, “Electronic properties of intercalation complexes of the transition metal dichalcogenides”, Adv. Phys. 36(1), 1–94 (1987).
- [16] I. Grygorchak, F. Ivashchyshyn, P. Stakhira, R.R. Reghu, V. Cherpak, and J.V. Grazulevicius, “Intercalated Nanostructure Consisting of Inorganic Receptor and Organic Ambipolar Semiconductor”, J. Nanoelectron. Optoelectron. 8, 292–296 (2013).
- [17] T.M. Bishchaniuk, et al., “Electronic Processes and Energy Storage in Inorganic/Organic Nanohybrids”, Mol. Cryst. Liq. Cryst. 589, 132–140 (2014).
- [18] Z. Stoinov, B. Grafov, B. Savvova-Stoinova, and V. Yelkin, Electrochemical Impedance, Nauka, Moscow, 1991, [in Russian].
- [19] Impedance spectroscopy. Theory, experiment and application, eds. E. Barsoukov and J.R. Macdonald, Wiley Interscience, Hoboken, New Jersey, 2005.
- [20] J. Bisquert, H. Randriamahazaka, G. Garcia-Belmonte, “Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry”, Electrochimica Acta 51, 627–640 (2005).
- [21] I. Mora-Seró, et al., “Implications of the Negative Capacitance Observed at Forward Bias in Nanocomposite and Polycrystalline Solar Cells”, Nano Letters. 6(4), 640–650 (2006).
- [22] I.I. Grygorchak, F.O. Ivashchyshyn, M.V. Tokarchuk, N.T. Pokladok, and O.V. Viznovych, “Modification of properties of GaSe<β-cyclodexterin> clathrat by synthesis in superposed electric and light-wave fields”, J. Appl. Phys. 121, 185501(1–7) (2017).
- [23] S. Luryi, “Quantum capacitance devices”, Appl. Phys. Lett. 52, 501–503 (1988).
- [24] V.V. Kaminskii and S.M. Solov’ev, “Emf induced by a change in the samarium ion valence as a result of a phase transition in SmS single crystals”, Phys. Solid State 43, 439–442 (2001).
- [25] V.V. Kaminskii and M.M. Kazanin, “Thermovoltaic effect in thin-film samarium-sulfide-based structures”, Tech. Phys. Lett. 34, 361-362 (2008).
- [26] I.A. Pronin, B.V. Donkova, D.T. Dimitrov, I.A. Averin, J.A. Pencheva, and V.A. Moshnikov, “Relationship between the photocatalytic and photoluminescence properties of zinc oxide doped with copper and managanese”, Semiconductors 48, 842-847 (2014).
- [27] L.K. Krasteva, et al., “Synthesis and characterization of nanostructured zinc oxide layers for sensor applications”, Semiconductors 47, 586-591 (2013).
- [28] V.V. Kaminskii, L.N. Vasil’ev, M.V. Romanova, and S.M. Solov’ev, “The mechanism of the appearance of an electromotive force on heating of SmS single crystals”, Phys. Solid State 43, 1030-1032 (2001).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-720b31e0-8983-4de8-982e-a8320b019069