PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

More on the behaviors of fixed points sets of multifunction and applications

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study the behaviors of fixed points sets of non necessarily pseudo-contractive multifunctions. Rather than comparing the images of the involved multifunctions, we make use of some conditions on the fixed points sets to establish general re­sults on their stability and continuous dependence. We illustrate our results by applications to differential inclusions and give stability results of fixed points sets of non necessarily pseudo-contractive multifunctions with respect to the bounded proximal convergence.
Rocznik
Strony
427--443
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
  • Laboratoire de Mecanique Physique et Modelisation Mathematique Universite de Medea, Algeria
autor
  • Laboratoire de Mathematiques et ses Applications Universite d'Oran, Algeria
Bibliografia
  • [1] R.P. Agarwal, D. O'Regan, D.R. Sahu, Fixed Point Theory for Lipschitzian-type Map­pings with Applications, Springer, 2009.
  • [2] B. Alleche, On hemicontinuity of bifunctions for solving equilibrium problems, Adv. Nonlinear Anal. 3 (2014) 2, 69-80.
  • [3] B. Alleche, V.D. Radulescu, Equilibrium problem techniques in the qualita­tive analysis of quasi-hemivariational inequalities, Optimization (2014), DOI 10.1080/02331934.2014.917307.
  • [4] H. Attouch, J.-P. Penot, H. Riahi, The continuation method and variational conver­gence, Fixed Point Theory and Applications, [in:] M. Thera, J.-B. Baillon (eds.), vol. 252, Pitman Research Notes in Mathematics, Longman, London, 1991, 9-32.
  • [5] H. Attouch, R. Wets, Quantitative stability of variational systems: I. The epigraphical distance, Trans. Amer. Math. Soc. 328 (1991), 695-730.
  • [6] J.-P. Aubin, A. Cellina, Differential Inclusion, Set-Valued Map and Viability Theory, Springer-Verlag, 1984.
  • [7] J.-P. Aubin, H. Frankowska, On inverse function theorems for set-valued maps, J. Maths. Pures Appl. (1987), 71-89.
  • [8] D. Aze, J.-P. Penot, On the dependence of fixed point sets of pseudo-contractive multi-functions. Application to differential inclusions, Nonlinear Dyn. Syst. Theory 6 (2006) 1, 31-47.
  • [9] L. Barbet, K. Nachi, Sequences of contractions and convergence of fixed points, Monogr. Semin. Mat. Garcia Galdeano 33 (2006), 51-58.
  • [10] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers, 1993.
  • [11] G. Beer, S. Levi, Gap, excess and bornological convergence, Set-Valued Var. Anal. 16 (2008), 489-506.
  • [12] G. Beer, R. Lucchetti, Weak topologies for the closed subsets of a metrizable space, Trans. Amer. Math. Soc. 335 (1993), 805-822.
  • [13] G. Beer, R. Lucchetti, Well-posed optimization problems and a new topology for the closed subsets of a metric space, Rocky Mountain J. Math. 23 (1993), 1197-1220.
  • [14] S. Benahmed, On differential inclusions with unbounded right-hand side, Serdica Math. J. 37 (2011) 1, 1-8.
  • [15] S. Benahmed, D. Aze, On fixed points of generalized set-valued contractions, Bull. Aust. Math. Soc. 81 (2010) 1, 16-22.
  • [16] V. Berinde, M. Pacurar, The role of the Pompeiu-Hausdorff metric in fixed point theory, Creat. Math. Inform. 22 (2013) 2, 35-42.
  • [17] M. Bianchi, G. Kassay, R. Pini, An inverse map result and some applications to sensi­tivity of generalized equations, J. Math. Anal. Appl. 399 (2013), 279-290.
  • [18] M. Bianchi, G. Kassay, R. Pini, Stability results of variational systems un­der openness with respect to fixed sets, J. Optim. Theory. Appl. (2014), DOI 10.1007/sl0957-014-0560-4.
  • [19] K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin, New York, 1992.
  • [20] A.L. Dontchev, W.W. Hager, An inverse mapping theorem for set-valued maps, Proc. Amer. Math. Soc. 121 (1994) 2, 481-489.
  • [21] A.F. Filippov, Classical solutions of differential equations with multivalued right-hand side, SIAM J. Control 5 (1967), 609-621.
  • [22] M.H. Geoffroy, G. Pascaline, Generalized differentiation and fixed points sets behaviors with respect to Fisher convergence, J. Math. Anal. Appl. 387 (2012), 464-474.
  • [23] A. Granas, J. Dugundji, Fixed Point Theory, Springer, 2003.
  • [24] L. Hola, D. Holy, A weakening of the Attouch-Wets topology on function spaces, Tatra Mount. Math. Publ. 2 (1993), 105-121.
  • [25] S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis, vol. I, Theory, Kluwer Academics Publishers, 1997.
  • [26] A.D. Ioffe, Existence and relaxation theorems for unbounded differential inclusions, J. Convex Anal. 13 (2006), 353-362.
  • [27] T.-C. Lim, On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436-441.
  • [28] R. Lucchetti, Convexity and Well-Posed Problems, Springer, 2006.
  • [29] J. T. Markin, Continuous dependence of fixed point sets, Proc. Amer. Math. Soc. 38 (1973) 3, 436-441.
  • [30] K. Nachi, J.-P. Penot, Inversion of multifunctions and differential inclusions, Control Cybernet. 34 (2005) 3, 871-901.
  • [31] D. Pai, P. Shunmugaraj, On stability of approximate solutions of minimization problems, Indian Inst. Thee, Bombay, India, 1990.
  • [32] N.S. Papageorgiou, Convergence theorems for fixed points of multifunctions and so­lutions of differential inclusions in Banach spaces, Glas. Mat. Ser. Ill 23 (1988) 2, 247-257.
  • [33] J.-P. Penot, The cosmic Hausdorff topology, the bounded Hausdorff topology, and con­tinuity of polarity, Proc. Amer. Math. Soc. 113 (1991), 275-286.
  • [34] J.-P. Penot, C. Zalinescu, Bounded (Hausdorff) convergence: basic facts and applica­tions, Proc. Amer. Math. Soc. (2005).
  • [35] R.T. Rockafellar, R.J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, Heidel­berg, 2009.
  • [36] Y. Sonntag, C. Zalinescu, Set convergence. An attempt of classification, Trans. Amer. Math. Soc. 340 (1993) 1, 199-226.
  • [37] Q.J. Zhu, On the solution set of differential inclusions in Banach spaces, J. Differential Equations 93 (1991) 1, 213-237.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-720b0bf4-3147-496c-9b11-c11599d53671
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.