Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The traffic sign identification and recognition system (TSIRS) is an essential component for autonomous vehicles to succeed. The TSIRS helps to collect and provide helpful information for autonomous driving systems. The information may include limits on speed, directions for driving, signs to stop or lower the speed, and many more essential things for safe driving. Recently, incidents have been reported regarding autonomous vehicle crashes due to traffic sign identification and recognition system failures. The TSIRS fails to recognize the traffic signs in challenging conditions such as skewed signboards, scratches on traffic symbols, discontinuous or damaged traffic symbols, etc. These challenging conditions are presented for various reasons, such as accidents, storms, artificial damage, etc. Such traffic signs contain an ample amount of noise, because of which traffic sign identification and recognition become a challenging task for automated TSIRS systems. The proposed method in this paper addresses these challenges. The sign edge is a helpful feature for the recognition of traffic signs. A novel traffic sign edge detection algorithm is introduced based on bilateral filtering with adaptive thresholding and varying aperture size that effectively detects the edges from such noisy images. The proposed edge detection algorithm and transfer learning is used to train the Convolutional Neural Network (CNN) models and recognize the traffic signs. The performance of the proposed method is evaluated and compared with existing edge detection methods. The results show that the proposed algorithm achieves optimal Mean Square Error (MSE) and Root Mean Square Error (RMSE) error rates and has a better Signal to Noise Ratio (SNR) and Peak Signal to Noise Ratio (PSNR) ratio than the traditional edge detection algorithms. Furthermore, the precision rate, recall rate, and F1 scores are evaluated for the CNN models. With the German Traffic Sign Benchmark database (GTSRB), the proposed algorithm and Inception V3 CNN model gives promising results when it receives the edge-detected images for training and testing.
Rocznik
Tom
Strony
199--222
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
- Symbiosis International (Deemed University) (SIU), Pune, India
autor
- Symbiosis Centre for Information Technology (SCIT), Symbiosis International (Deemed University), Pune, India
Bibliografia
- 1. Liu Chunsheng, Shuang Li, Faliang Chang, Yinhai Wang. 2019. „Machine vision based traffic sign detection methods: Review, analyses and perspectives.” IEEE Access 7: 86578-86596. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2019.2924947.
- 2. Alam Altaf, Zainul Abdin Jaffery. 2020. „Indian traffic sign detection and recognition. International Journal of Intelligent Transportation Systems Research 18(1): 98-112. DOI: https://doi.org/10.1007/s13177-019-00178-1.
- 3. Winkle Thomas. 2022. “Findings from Traffic Accident Analysis”. Product Development within Artificial Intelligence, Ethics and Legal Risk. Springer Vieweg, Wiesbaden. P. 7-43. ISBN: 978-3-658-34293-7. DOI: https://doi.org/10.1007/978-3-658-34293-7
- 4. Temel Dogancan, Min-Hung Chen, Ghassan AlRegib. 2019. „Traffic sign detection under challenging conditions: A deeper look into performance variations and spectral characteristics.” IEEE Transactions on Intelligent Transportation Systems 21(9): 3663-3673. DOI: https://doi.org/10.1109/TITS.2019.2931429.
- 5. Barodi Anass, Abdrrahim Bajit, Mohammed Benbrahim, Ahmed Tamtaoui. 2020. „An Enhanced Approach in Detecting Object Applied to Automotive Traffic Roads Signs.” In: 2020 IEEE 6th International Conference on Optimization and Applications (ICOA). P. 1-6. IEEE 2020. 20-21 April 2020. Beni Mellal, Morocco. ISBN: 978-1-7281-6655-1. DOI: https://doi.org/10.1109/ICOA49421.2020.9094457.
- 6. Sundararajan Duraisamy. 2017. Digital image processing: a signal processing and algorithmic approach. Springer International Publishing. ISBN: 978-981-10-6113-4.
- 7. Ghosh Chinmoy, Suman Majumder, Sangram Ray, Shrayasi Datta, Satyendra Nath Mandal. 2020. „Different EDGE detection techniques: a review.” Electronic Systems and Intelligent Computing: 885-898. DOI: https://doi.org/10.1007/978-981-15-7031-5_84.
- 8. Amer Ghassan Mahmoud Husien, Ahmed Mohamed Abushaala. 2015. „Edge detection methods.” In: 2015 2nd World Symposium on Web Applications and Networking (WSWAN). P. 1-7. IEEE, 2015. 21-23 March 2015. Sousse, Tunisia. ISBN: 978-1-4799-8172-4. DOI: https://doi.org/10.1109/WSWAN.2015.7210349.
- 9. Yousaf Rehan Mehmood, Hafiz Adnan Habib, Hussain Dawood, and Sidra Shafiq. 2018. „A comparative study of various edge detection methods.” In: 2018 14th International Conference on Computational Intelligence and Security (CIS). P. 96-99. IEEE, 2018. 16-19 November 2018. Hangzhou, China. ISBN: 978-1-7281-0170-5. DOI: https://doi.org/10.1109/CIS2018.2018.00029.
- 10. Shah Bickey Kumar, Vansh Kedia, Rohan Raut, Sakil Ansari, Anshul Shroff. 2020. „Evaluation and Comparative Study of Edge Detection Techniques.” IOSR Journal of Computer Engineering 22(5): 6-15. DOI: https://doi.org/10.9790/0661-2205030615. ISSN: 2278-8727.
- 11. Deshpande Abhinav V., Ramani Kannan, M. Monica Subashini. 2018. „Study of Various Image De-Noising Methods Used for the Purpose of Traffic Sign Board Recognition in an Intelligent Advanced Driver Assistance System.” In: 2018 International Conference on Intelligent and Advanced System (ICIAS). P. 1-6. IEEE, 2018. 13-14 August 2018. Kuala Lumpur, Malaysia. ISBN: 978-1-5386-7270-9. DOI: https://doi.org/10.1109/ICIAS.2018.8540630.
- 12. Kumar Arvind, Sartaj Singh Sodhi. 2020. „Comparative analysis of gaussian filter, median filter and denoise autoenocoder.” In: 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom). P. 45-51. IEEE, 2020. 12-14 March 2020. New Delhi, India. DOI: 10.23919/INDIACom49435.2020.9083712.
- 13. Kumar Sunil, Amit Kumar Upadhyay, Preeti Dubey, and Sudeep Varshney. 2021. “Comparative analysis for Edge Detection Techniques.” In: 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). P. 675-681. IEEE, 2021. 19-20 February 2021. Greater Noida, India. ISBN: 978-1-7281-8530-9. DOI: 10.1109/ICCCIS51004.2021.9397225.
- 14. Tariq Nazish, Rostam Affendi Hamzah, Theam Foo Ng, Shir Li Wang, Haidi Ibrahim. 2021 „Quality assessment methods to evaluate the performance of edge detection algorithms for digital image: A systematic literature review.” IEEE Access. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2021.3089210.
- 15. Yu Zhiding, Chen Feng, Ming-Yu Liu, Srikumar Ramalingam. 2017 „Casenet: Deep category-aware semantic edge detection.” In: Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR). P. 5964-5973. July 2017.
- 16. Liu Yun, Ming-Ming Cheng, Xiaowei Hu, Kai Wang, and Xiang Bai. 2017. „Richer convolutional features for edge detection.” In: Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR). P. 3000-3009. July 2017.
- 17. Lakhani Kanika, Bhawna Minocha, Neeraj Gugnani. 2016. „Analyzing edge detection techniques for feature extraction in dental radiographs.” Perspectives in Science 8: 395-398. DOI: https://doi.org/10.1016/j.pisc.2016.04.087.
- 18. Srujana P., J. Priyanka, Vyss Sudir Patnaikuni, Nancharaiah Vejendla. 2021. „Edge Detection with different Parameters in Digital Image Processing using GUI.” In: 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). P. 795-802. IEEE, 2021. 08-10 April 2021. Erode, India. ISBN: 978-1-6654-4775-1. DOI: 10.1109/ICCMC51019.2021.9418327.
- 19. Halder Amiya, Pritam Bhattacharya, Aritra Kundu. 2019. „Edge detection method using Richardson’s extrapolation formula.” In: Soft Computing in Data Analytics, Advances in Intelligent Systems and Computing 758. 727-733. Springer, Singapore. ISBN: 978-981-13-0513-9. DOI: 10.1007/978-981-13-0514-6_69.
- 20. Srinithyee S.K., E. Srivarsha, R. Priyadharsini, A. Beulah. 2021. „Optimized Image Edge Detection Approach using Fractional Order Calculus.” In: 2021 6th International Conference on Communication and Electronics Systems (ICCES). P. 1179-1183. IEEE. 08-10 July 2021. Coimbatre, India. ISBN: 978-1-6654-1182-0. DOI: 10.1109/ICCES51350.2021.9489066.
- 21. Mineo Carmelo, Stephen Gareth Pierce, Rahul Summan. 2019 „Novel algorithms for 3D surface point cloud boundary detection and edge reconstruction.” Journal of Computational Design and Engineering 6(1): 81-91. DOI: https://doi.org/10.1016/j.jcde.2018.02.001.
- 22. Zheng Zhen, Bingting Zha, Hailu Yuan, Youshi Xuchen, Yanliang Gao, He Zhang. 2020. „Adaptive edge detection algorithm based on improved grey prediction model.” IEEE Access 8: 102165-102176. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2020.2999071.
- 23. Shi Junfei, Haiyan Jin, Zhaolin Xiao. 2020. „A novel hybrid edge detection method for polarimetric SAR images.” IEEE Access 8: 8974-8991. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2020.2963989
- 24. Xizhen Shen, Zeng Wei, Guo Yiling, Yin Shengyang. 2021. „Edge detection algorithm of plant leaf image based on improved Canny.” In: 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). P. 342-345. IEEE. 09-11 April 2021. Xi'an, China. ISBN: 978-1-6654-4730-0. DOI: 10.1109/ICSP51882.2021.9408929.
- 25. Bausys Romualdas, Giruta Kazakeviciute-Januskeviciene, Fausto Cavallaro, Ana Usovaite. 2020. „Algorithm selection for edge detection in satellite images by neutrosophic WASPAS method.” Sustainability 12(2): 548. DOI: https://doi.org/10.3390/su12020548.
- 26. Dhillon Deepak, Rajlaxmi Chouhan. 2022. „Enhanced Edge Detection Using SR-Guided Threshold Maneuvering and Window Mapping: Handling Broken Edges and Noisy Structures in Canny Edges.” IEEE Access 10: 11191-11205. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2022.3145428.
- 27. Fawwaz I., M. Zarlis, R.F. Rahmat. 2018. „The edge detection enhancement on satellite image using bilateral filter.” In: IOP Conference Series: Materials Science and Engineering 308(1): 012052. IOP Publishing. 24-25 August 2017, Banda Aceh, Indonesia.
- 28. Ai Jiaqiu, Ruiming Liu, Bo Tang, Lu Jia, Jinling Zhao, Fang Zhou. 2019. „A refined bilateral filtering algorithm based on adaptively-trimmed-statistics for speckle reduction in SAR imagery.” IEEE Access 7: 103443-103455. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2019.2931572.
- 29. Galetto Fernando J., Guang Deng, Mukhalad Al-Nasrawi, Waseem Waheed. “Edge-aware filter based on adaptive patch variance weighted average. 2021.” IEEE Access 9: 118291-118306. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2021.3106907.
- 30. How Dickson Neoh Tze, Khairul Salleh Mohamed Sahari, Yew Cheong Hou, Omar Gumaan Saleh Basubeit. 2019. „Recognizing Malaysia traffic signs with pre-trained deep convolutional neural networks.” In: 2019 4th International Conference on Control, Robotics and Cybernetics (CRC). P. 109-113. IEEE. 27-30 September 2019. Tokyo, Japan. ISBN: 978-1-7281-4621-8. DOI: 10.1109/CRC.2019.00030.
- 31. Palavanchu Sowjanya. 2021. „Transfer Learning Models for Traffic Sign Recognition System.” Annals of the Romanian Society for Cell Biology: 3477-3489.
- 32. Rajagopal Balaji Ganesh. 2020. „Intelligent traffic analysis system for Indian road conditions.” International Journal of Information Technology: 1-13. DOI: https://doi.org/10.1007/s41870-020-00447-3.
- 33. Ghedia Navneet S., C. H. Vithalani. 2021. „Outdoor object detection for surveillance based on modified GMM and Adaptive Thresholding.” International Journal of Information Technology 13(1): 185-193. DOI: https://doi.org/10.1007/s41870-020-00522-9.
- 34. Pamuji Fandi Yulian, Moch Arief Soeleman. 2020. „Improved Number Detection For Low Resolution Image Using the Canny Algorithm.” In: 2020 International Seminar on Application for Technology of Information and Communication (iSemantic). P. 638-642. IEEE. 9-20 September 2020. Semarang, Indonesia. ISBN: 978-1-7281-9069-3. DOI: 10.1109/iSemantic50169.2020.9234190.
- 35. Nadipally Manasa. 2019. „Optimization of methods for image-texture segmentation using ant colony optimization.” In: Intelligent data analysis for biomedical applications. P. 21-47. Academic Press. ISBN: 9780128155530. DOI: https://doi.org/10.1016/B978-0-12-815553-0.00002-1.
- 36. Malarvizhi C., P. Balamurugan. 2019. „Qualitative Analysis Of Various Edge Detection Techniques Applied On Cervical Herniated Spine Images.” ICTACT Journal of Image and Video Processing 9(04): 1986-1991. DOI: 10.21917/ijivp.2019.0282.
- 37. Paul Eben Sophia, J. Anitha. 2019. „Analysis of Transform-Based Compression Techniques for MRI and CT Images.” In: Intelligent Data Analysis for Biomedical Applications. P. 103-120. Academic Press. ISBN: 9780128155530. DOI: https://doi.org/10.1016/B978-0-12-815553-0.00005-7.
- 38. Fitriyah Hurriyatul, Edita Rosana Widasari, Gembong Edhi Setyawan. 2017. „Traffic sign recognition using edge detection and eigen-face: Comparison between with and without color pre-classification based on Hue.” In: 2017 International Conference on Sustainable Information Engineering and Technology (SIET). P. 155-158. IEEE. 24-25 November 2017. Malang, Indonesia. ISBN: 978-1-5386-2183-7. DOI: 10.1109/SIET.2017.8304127.
- 39. Zhu Yanzhao, Wei Qi Yan. 2022. „Traffic sign recognition based on deep learning.” Multimedia Tools and Applications 81(13): 17779-17791. DOI: https://doi.org/10.1007/s11042-022-12163-0.
- 40. Wan Haifeng, Lei Gao, Manman Su, Qinglong You, Hui Qu, Qirun Sun. 2021. „A novel neural network model for traffic sign detection and recognition under extreme conditions.” Journal of Sensors. DOI: https://doi.org/10.1155/2021/9984787.
- 41. Lin Chunmian, Lin Li, Wenting Luo, Kelvin C.P. Wang, Jiangang Guo. 2019. „Transfer learning based traffic sign recognition using inception-v3 model.” Periodica Polytechnica Transportation Engineering 47(3): 242-250. DOI: https://doi.org/10.3311/PPtr.11480.
- 42. Atif Muhammad, Tommaso Zoppi, Mohamad Gharib, Andrea Bondavalli. 2022. „Towards enhancing traffic sign recognition through sliding windows.” Sensors 22(7): 2683. DOI: https://doi.org/10.3390/s22072683.
- 43. Persson Siri. 2018. „Application of the German Traffic Sign Recognition Benchmark on the VGG16 network using transfer learning and bottleneck features in Keras.” Thesis. Uppsala universitet, Datalogi. Available at: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-344672.
- 44. Kheder Mohammed Qader. 2022. „Improved Traffic Sign Recognition System (Itsrs) for Autonomous Vehicle Based on Deep Convolutional Neural Network.” SSRN. DOI: http://dx.doi.org/10.2139/ssrn.4135313. Available at: https://ssrn.com/abstract=4135313.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-720a4aa5-a489-4a3a-a5a0-a6ba35f85069