PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Enancjoselektywna enzymatyczna desymetryzacja katalizowana oksydoreduktazami. Reakcje utleniania. Część 2

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Enantioselective enzymatic desymmetrization catalyzed by oxidoreductases. Oxidation reactions. Part 2
Języki publikacji
PL
Abstrakty
EN
In continuation of our work, we herein describe next enzyme classes applied for oxidation reaction. Dioxygenases, oxidases, and peroxidases are successfully used in the synthesis of desymmetrization products with high yields and enantiomeric excesses. Aromatic dioxygenases, such as toluene dioxygenase (TDO), naphthalene dioxygenase (NDO), and biphenyl dioxygenase (BPDO) found in the prokaryotic microorganisms are enzymes belonging to the dioxygenase class and are the most commonly used in organic synthesis. The α-oxidation of various fatty acids in the presence of an α-oxidase from germinating peas is one of the few examples of oxidases application in asymmetric organic synthesis. The intermediary α-hydroxyperoxyacids can undergo two competing reactions: decarboxylation of the corresponding aldehydes or reduction to the (R)-2-hydroxy acids. In order to eliminate the competitive decarboxylation reaction tin(II) chloride is used as an in situ reducing agent. Peroxidases are the redox enzymes found in various sources such as animals, plants, and microorganisms. Due to the fact that, in contrast to monooxygenases, no additional cofactors are required, peroxidases are highly attractive for the preparative biotransformation. Oxidation reactions catalyzed by (halo)peroxydases are also often used in organic synthesis. N-Oxidation of amines, for instance, leads to the formation of the corresponding aliphatic N-oxides, aromatic nitro-, or nitrosocompounds. From a preparative synthesis standpoint, however, sulfoxidation of thioether is important since it was proven to proceed in a highly stereo- and enantioselective manner. Furthermore, depending on the source of haloperoxidase, chiral sulfoxides of opposite configurations can be obtained.
Rocznik
Strony
53--64
Opis fizyczny
Bibliogr. 23 poz., schem., tab.
Twórcy
  • Katedra i Zakład Biochemii, Collegium Medicum Uniwersytet Mikołaja Kopernika ul. Karłowicza 24, 85-092 Bydgoszcz
  • Katedra i Zakład Biochemii, Collegium Medicum Uniwersytet Mikołaja Kopernika ul. Karłowicza 24, 85-092 Bydgoszcz
  • Katedra Chemii Organicznej, Uniwersytet Mikołaja Kopernika ul. Gagarina 7, 87-100 Toruń
  • Katedra i Zakład Chemii Organicznej, Collegium Medicum Uniwersytet Mikołaja Kopernika ul. dr. A. Jurasza 2, 85-089 Bydgoszcz
  • Katedra i Zakład Biochemii, Collegium Medicum Uniwersytet Mikołaja Kopernika ul. Karłowicza 24, 85-092 Bydgoszcz
  • Katedra i Zakład Biochemii, Collegium Medicum Uniwersytet Mikołaja Kopernika ul. Karłowicza 24, 85-092 Bydgoszcz
Bibliografia
  • [1] D.T. Gibson, R.E. Parales, Curr. Opin. Biotechnol., 2000, 11, 236.
  • [2] C.S. Butler, J.R. Mason, Adv. Microb. Physiol., 1997, 38, 47.
  • [3] A. Kerridge, A. Willetts, H. Holland, J. Mol. Catal. B: Enzymol., 1999, 6, 59.
  • [4] A.N. Phung, M.T. Zannetti, G. Whited, W.-D. Fessner, Angew. Chem., Int. Ed., 2003, 42, 4821.
  • [5] W. Adam, W. Boland, J. Hartmann-Schreier, H.-U. Humpf, M. Lazarus, A. Saffert, C.R. Saha-Moller, P. Schreier, J. Am. Chem. Soc., 1998, 120, 11044.
  • [6] S. Verma, R.S. Dubey, Plant Sci., 2003, 164, 645.
  • [7] M. Zacchini, E. Rea, M. Tullio, M. de Agazio, Plant Physiol. Biochem., 2003, 41, 49.
  • [8] H. Mehlhorn, M. Lelandais, H.G. Korth, C.H. Foyer, FEBS Lett., 1996, 378, 203.
  • [9] S. Kobayashi, M. Nakano, T. Kimura, A.P. Schaap, Biochemistry, 1987, 26, 5019.
  • [10] M. Andersson, A. Willetts, S. Allenmark, J. Org. Chem., 1997, 62, 8455.
  • [11] S. G. Allenmark, M.A. Andersson, Tetrahedron: Asymmetry, 1996, 7, 1089.
  • [12] M.A. Andersson, S.G. Allenmark, Tetrahedron, 1998, 54, 15293.
  • [13] W. Adam, F. Heckel, C.R. Saha-Moller, M. Taupp, P. Screier, Tetrahedron: Asymmetry, 2004, 15, 983.
  • [14] A.L.M. Porto, F. Cassiola, S.L.P. Dias, I. Joekes, Y. Gushikem, J.A.R. Rodrigues, P.J.S. Moran, G.P. Manfio, A.J. Marsaioli, J. Mol. Catal. B: Enzymol., 2002, 19-20, 327.
  • [15] S. Hu, L.P. Hager, J. Am. Chem. Soc., 1999, 121, 872.
  • [16] E.J. Allain, L.P. Hager, L. Deng, E.N. Jacobsen, J. Am. Chem. Soc., 1993, 115, 4415.
  • [17] A.F. Dexter, F.J. Lakner, R.A. Campbell, L.P. Hager, J. Am. Chem. Soc., 1995, 117, 6412.
  • [18] F.J. Lakner, L.P. Hager, J. Org. Chem., 1996, 61, 3923.
  • [19] J.S. Dordick, Trends Biotechnol., 1992, 10, 287.
  • [20] H. Uyama, H. Kurioka, J. Sugihara, S. Kobayashi, Bull. Chem. Soc. Jpn., 1996, 69, 189.
  • [21] S. Kobayashi, S. Shoda, H. Uyama, Adv. Polym. Sci., 1995, 121, 1.
  • [22] K. Fukunishi, K. Kitada, I. Naito, Synthesis, 1991, 237.
  • [23] M.M. Schmitt, E. Schuler, M. Braun, D. Haring, P. Schreier, Tetrahedron Lett., 1998, 39, 2945.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7209f100-8adc-499a-944d-a0b324823f30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.