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ABSTRACT

With continuous improvements in the function and performance of ship equipment, mechanisms of failure have become 
more and more complicated. To avoid over-maintenance or under-maintenance in existing routine ship maintenance 
strategies, a ship-level method for repair decisions based on the preventive maintenance concept is proposed in this 
paper. First, the anticipated repair demand levels of key components are calculated using an improved failure mode 
and effects analysis (FMEA) method; second, a Weibull distribution model is established, and the parameters are 
estimated using the maximum likelihood estimation (MLE) to predict the characteristic life of the equipment; then, 
logical decision principles and rule-based reasoning (RBR) are used to determine the ship repair level and repair 
timing. Finally, the feasibility and application value of the proposed repair strategy were verified by case studies, and 
a ship-level system for repair decisions was established.
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INTRODUCTION

With continuous improvements in ship equipment 
technologies since the 21st century, along with increasing 
frequency of use, the mismatch between the existing ship-
level repair modes and maintenance needs has become 
increasingly apparent [1]. Behind the increasing importance 
of ship equipment maintenance and support, some urgent 
problems need to be solved, such as the repair scope, repair 
level, and repair timing, which have been of concern to the 
ship equipment maintenance personnel.

At present, the maintenance of ship equipment is mainly 
performed as scheduled maintenance or temporary repairs, 
and major scheduled maintenance activities are often carried 
out in conjunction with ship-level repairs [2]. Ship-level 

repairs can be divided into three categories according to 
the scale of the repair work: dock repairs, minor repairs, and 
medium repairs [3]. During a ship’s life cycle, the general ship 
repair structure is as follows: service - dock repair - minor 
repair - dock repair - medium repair - dock repair - minor 
repair - dock repair - decommissioning [4]. The maintenance 
interval and in-service time for ship-level repairs are typically 
lengthy, and uniform periodic maintenance strategies are not 
flexible enough, highlighting an urgent need for preventive 
maintenance strategies for ship equipment and novel levels 
of repair modes that combine both periodic and contingent 
repairs [5-7].

In the field of preventive maintenance, research has been 
carried out on complex equipment repair decision problems, 
including determining the repair scope, repair level, and 
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repair timing. Girtler [8] presents a three-state semi-Markov 
model based on the state transition process of machines in 
ship power stations, and the applicability of these probabilities 
in decision-making, with the assistance of the Bayesian 
statistical theory is demonstrated. Wei [9] proposed a task-
oriented preventive maintenance strategy for naval fleets 
with the lowest maintenance budget as the optimization 
objective. A model for optimizing situational maintenance 
decisions to determine the repair scope of the system was 
established. P. He [10] performed a repair-level analysis of air 
defence and anti-missile equipment, established a decision 
flow model based on modular equipment, and applied 
an improved adaptive particle swarm optimizer (APSO) 
algorithm to determine the repair level of the equipment. 
Girtler [11] presents the possibility of controlling the actual 
operating process of an arbitrary plant installed in a marine 
power plant based on a four-state semi-Markovian process 
and the operational decision to determine a rational route 
for the operating process of the plant based on a dynamic 
programming method with Bellman’s principle of optimality. 
Zagan [12] develops a multiple linear regression model to 
describe the effect of historical data on hull repairs, paint time, 
piping, age, structure and panel replacement to predict a ship’s 
overall maintenance time. Lin [13] introduced a dynamic 
performance inspection and situational maintenance 
strategy for the inertial navigation system of a ship. A Wiener 
process model was used to establish a single-component 
system performance degradation model for determining the 
optimal time to repair the system. Hashemi [14] proposed two 
repair strategies based on the Pólya process, as well as a cost 
function based on the repair cost of the system, and the system 
availability was used to obtain the optimal time for preventive 
maintenance of the system. Niu [15] established a multi-
objective optimization model with maintenance frequency 
as the decision variable. Then, Monte Carlo simulations were 
used to solve the optimization model and obtain optimal 
maintenance intervals for parts during their service life. Sa’ad 
[16] developed an optimal preventive maintenance strategy for 
minimum repair, which determines the optimal preventive 
maintenance scope to yield maximum availability. Preventive 
maintenance of a photovoltaic (PV) plant was taken as an 
example.

Although the above-mentioned studies have proposed 
many theories and techniques for preventive maintenance 
decisions of complex equipment, fewer studies have applied 
these theories and techniques to repair-mode planning for 
whole ships. Most existing studies have focused on optimal 
design of the ship-level repair structure [17], macro reform 
of the ship-level repair mode, or calculating planned repair 
intervals; however, the existing models have not been refined 
enough to determine the scope, class, and timing of whole 
ship repairs. In this paper, the repair demand level is assessed, 
and the repair scope of the whole ship is determined using 
equipment failure information. Furthermore, technical state 
data and historical failure information of ship equipment are 
used to determine the remaining life. The repair level and 
repair timing of the whole ship are also determined using 

two methods – namely logical decision principles (LDP) and 
rule-based reasoning (RBR) – and a ship equipment-level 
repair decision information system is introduced to provide 
technical support for the repair of ships.

KEY THEORIES AND TECHNIQUES

The repair decision process of ships is based on three 
aspects: repair scope, repair level, and repair timing. For 
the repair scope, FMEA is adopted to analyse individually the 
critical equipment of the ship to determine the level of repair 
needed for each key component and the degree of impact on 
the system it belongs to. For assessing the repair level of the 
whole ship, a logical decision method is adopted. The repair 
level of the whole ship is determined from the bottom up 
according to the logical decision diagram and repair scope. 
For repair timing, the Weibull distribution and maximum 
likelihood estimation method are adopted to predict the 
equipment failure time and determine the repair level of 
the whole ship by generating rules in conjunction with the 
repair level of the ship.

FMEA

The qualitative FMEA method is particularly well-
suited to analysing descriptive information about faults 
at the phenomenal level, repair information, etc. For ship 
equipment, FMEA is a better method for making decisions 
about repair requirements under existing conditions, as 
the current data collection mostly comprises descriptive 
data about maintenance phenomena, so accurate sensor 
measurement data needs to be improved. The core step is to 
quantify the three indicators of Severity (S), Occurrence (O) 
and Detection (D) [18-20], and then obtain the risk priority 
number (RPN) by calculating the product of S, O and D.

However, traditional risk assessment methods have the 
following limitations or shortcomings: 1) the use of integer 
values to represent possible levels of risk for different risk 
factors is too crude and ignores the relative importance of 
each indicator; 2) risk factors are either not weighted or are 
difficult to determine; 3) different occurrence, detection, and 
frequency levels may produce the same RPN values [21-23]. 
In view of these shortcomings, relative weights can be applied 
to risk factors as a simple and straightforward method to 
determine the RPN [24]. In the improved method, the RPN 
can be expressed as

��� 	 �( ! ���b ! ���V ! �� (1)

Owing to the complexity and uniqueness of ships, an 
overly complex weighting method will greatly increase the 
economic and time costs. Based on the advice of professional 
maintenance personnel, this paper adopts ship risk severity 
k = 0.6, ship risk occurrence m = 0.2, and ship risk detection 
n = 0.2.
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A higher RPN indicates a higher risk of equipment failure 
in the system and a higher level of maintenance requirements. 
The evaluation criteria for severity of failure are presented 
in Table 1.

Tab. 1. Severity of failure rating for ship equipment

Rating Description of Severity(S)
9,10 Ship cannot be used

7,8 Huge impact on ship systems, making it difficult to work on 
the ship

5,6 Loss of function of equipment and inability to properly use 
some ship functions

3,4 Influences use of the equipment
1,2 Does not affect overall use of the equipment

Similarly, evaluation criteria for fault incidence and fault 
detection can be developed, as described in Tables 2 and 3.

Tab. 2. Failure occurrence rating for ship equipment

Rating Description of Failure Occurrence (O)

9,10 Mean Time Between Failure (MTBF) of less than 1 week

7,8 MTBF < 1 month

5,6 MTBF < 3 months

3,4 MTBF < 6 months

1,2 MTBF ≥ 6 months

Tab. 3. Failure detection rating for ship equipment

Rating Description of Likelihood of Detection (D)

9,10 Difficult to detect, requires specialist testing to find

7,8 Needs to be disassembled and tested over a long period of 
time using a specialized device to find

5,6 Can be detected using detection tools and with professional 
training

3,4 Can be detected by routine inspection with simple training

1,2 Directly detectable by senses without training

Once the evaluation criteria for S, O, and D have been 
established, criteria for evaluating the repair need can be 
developed using the RPN, as shown in Table 4.

Tab. 4. Rating of repair need based on risk priority number (RPN) of ship 
equipment

Repair Demand Level Description of RPN

I 0 < RPN < 0.648

II 0.648 ≤ RPN < 3

III 3 ≤ RPN < 8.232

IV 8.232 ≤ RPN < 17.496

V 17.496 ≤ RPN ≤ 24

In Table 4, the RPN is used to divide the repair need of ship 
equipment into five levels: I–V, where level I is the lowest and 
level V the highest. A higher level indicates a greater urgency 
and need for repair. For convenience, equipment with a repair 
demand level greater than II is collectively referred to as the 

high-risk part. To avoid confusion between the concepts of 
the repair level and repair demand level, it should be noted 
that dock repair, minor repair, and medium repair are classes 
of large-scale maintenance activities carried out on the whole 
ship, i.e., repair level; whereas Classes I, II, III, IV and V, 
as determined by the RPN, are used to classify critical and 
important equipment of the ship system according to their 
risk profile and repair need, i.e., the repair demand level.

WEIBULL DISTRIBUTION

To determine the repair time of ship equipment, it is often 
combined with failure prediction. At present, there are two 
types of failure prediction methods: (1) emerging methods 
based on artificial intelligence algorithms [25]; (2) traditional 
failure prediction methods based on the life distribution of 
the equipment [26]. Of these, the failure prediction methods 
based on artificial intelligence algorithms can more accurately 
estimate equipment life by analysing a large amount of real-
time monitoring data; however, this approach is limited 
by the huge computation load of monitoring the data, and 
results are difficult to obtain in real time; failure prediction 
methods based on life distribution can give a more accurate 
prediction of the time of equipment failure within a certain 
range, and much less maintenance data is required. Moreover, 
since the working state of the ship has a certain degree of 
confidentiality, large quantities of equipment maintenance 
data and real-time technical state data are difficult to obtain. 
The failure prediction method presented in this paper to 
determine the maintenance time of ship equipment is based 
on the life distribution.

Weibull Distribution Model
The exponential distribution, Weibull distribution, and 

normal distribution are commonly used to describe the life of 
a part, with various applications of life distribution. Since the 
Weibull distribution is a good fit for all types of experimental 
data and can describe all phases of the bathtub curve, it is 
often used to describe the life of parts. The failure behaviour 
of key parts of ship systems, such as bearings, gears, decks, 
electronic components, motors, engines, transmissions, 
hydraulic pumps, etc., will typically follow a “bathtub” curve 
and they will all obey the Weibull distribution [27].

The Weibull distribution can be divided into two types: 
three-parameter and two-parameter. The three-parameter 
Weibull distribution is not widely used in practical 
engineering problems because it requires the use of Newton’s 
iterative method to solve three transcendental equations 
for estimating the parameters. In addition, the selection of 
the initial values and parameter evaluation procedure are 
difficult, and operation data are often scattered. Therefore, 
the two-parameter Weibull distribution is selected here to 
describe the life of the ship equipment. The two-parameter 
Weibull cumulative distribution function is

���� 	 $ � M�� )��+��
0.� � � � 
 (2)
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where b (b> 0) is the shape parameter, which is closely related 
to the shape of the curve; θ is the scale parameter, θ> 0; and 
t is the time of use of the equipment. Eq. (3) represents the 
probability of equipment failure before time t.The failure 
probability density function is given by

���� 	 0
� �

+
��

0�' ! M�� )� �+��
0.� � � � 
 (3)

The reliability function is

���� 	 M�� )� �+��
0.� � � � 
 (4)

Maximum Likelihood Estimation Method
The unknown parameters of the two-parameter Weibull 

distribution include both shape and scale parameters. 
Each reliability index can be calculated only after these 
parameters are determined. At present, the most widely used 
parameter estimation method is the method of maximum 
likelihood estimation (MLE) [28]. The MLE results have high 
accuracy and can meet the requirements for ship equipment 
maintenance applications [29]. This method is therefore 
selected and used to estimate shape parameter b and scale 
parameter θ of the ship equipment from historical failure data.

The likelihood function of the two-parameter Weibull 
distribution is

��h� f� 	 " ����� 	 � 0
�
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0. (5)

The log-likelihood function is obtained by taking the 
logarithm on both sides, as follows:
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Taking the partial derivatives of θ and b, respectively, yields
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By solving this system of non-linear equations with the 
Newton‒Raphson algorithm, the parameter estimation results 
for θ and b are obtained when the log-likelihood function 
achieves its maximum value. Unknown θ and b values of the 
reliability function can be calculated to predict the life of the 
equipment by calculating each reliability assessment index. 
Commonly used life indexes include B10, B20, median life 
(B50), and characteristic life [30]. The characteristic life is 
the life when the reliability = 0.368 (cumulative probability 

of failure is 0.632). The characteristic life is often used to 
describe the overall life of a product. Compared with 
other life indicators, the characteristic life predicts the 
maximum possible product life, avoids problems such as 
over-maintenance, and is more economical. Therefore, the 
characteristic life as the maximum life of the equipment is 
adopted in this paper.

LOGICAL DECISION AND RULE-BASED REASONING

Repair Level Decision
The logical decision diagram analysis method is based on 

the reliability-centred maintenance (RCM) concept, which 
asks a series of logical questions about the performance 
indicators of the equipment according to the requirements 
of the decision objective to decide on the recommended 
maintenance method. The logical decision diagram is not only 
highly normative and intuitive, but also flexible and suitable 
for identifying key characteristics of a design. In this paper, 
the RCM concept is applied to ship equipment maintenance 
decision-making. The decision-making process is as follows: 
first, determine the equipment elements to be considered for 
maintenance; then input them into the judgment box of the 
logical decision diagram; finally, complete the analysis and 
decision-making process by subsequently answering “Yes” 
or “No” to each question [31]. To determine the repair level 
of the ship, the repair scope and repair demand level factors 
obtained using the FMEA method described previously are 
input into the logical decision diagram, as shown in Fig. 1. 
The logical decision diagram for the ship repair level is used 
to determine the repair level of the whole ship.

The constraints for logical determination are the number 
of faulty parts k, number of systems affected by the risky 
faulty parts s, and the sum of each fault RPN W (W = Σ PNk). 
To generate the rules for logical determination of the repair 
level, s and RPN are quantified and assigned values at each 
repair level. When all fault repair demand levels are I, 
the corresponding repair level is temporary repair; when 
there is a repair demand level V among the faulty parts, 
the corresponding repair level is medium repair. When 
the number of systems affected by a risky fault component 
s ≥ 6, the corresponding repair level is medium repair; when 
the number of systems affected by a risky fault component 
s ≥ 4, the corresponding repair level is minor repair. For the 
summation of the RPNs for each fault, W ≥ 100 corresponds 
to a medium repair, W ≥ 80 indicates a minor repair; W ≥ 40 
corresponds to a dock repair, and W < 40 corresponds to 
a temporary repair. It should be noted that, in practice, the 
s and RPN thresholds in the above rules can be flexibly 
adjusted according to the ship situation to suit different ship 
repair conditions.
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Reasoning for Timing of Repairs
After predicting the lifespan of key components using the 

Weibull distribution model, it is necessary to determine the 
repair time of each key component and the repair timing 
of the whole ship based on the prediction results. As the 
ship system is large and complex, the above logical decision 
method cannot be used to make accurate decisions on the 
repair timing of the whole ship. Instead, a more rigorous 
inference method based on generative rules is adopted to 
determine the repair timing through forward reasoning.

Rule-based reasoning describes relevant expert knowledge 
or experience as a set of rules representing specific problems 
in the field and the corresponding answers to those problems. 
The reasoning process used by experts is simulated to solve a 
certain problem [32-34]. The method uses a rational decision 
design approach, which is highly logical and rule-based. 
Rule-based reasoning is often represented by generative 
rules because the structure of the knowledge represented 
by generative rules is closer to human thinking habits 
and therefore easier to accept and understand. Generative 
rules are a way of representing knowledge with the help of 
the conditional IF-THEN statement. In its basic form, the 
IF-THEN statement can be defined as 

_����������'��������e����������'�� 
e��e����_��������%������������e������������%�� 

�� 

e��e����������n�� 
(8)

where P(X) is the conditional assertion (premise) of the 
generating equation, indicating the state for which the 
generating equation holds; Q(Y) is the concluding assertion 
of the generating equation, defining the conclusion or action 
that follows when the rule holds; P(X) is a logical expression 
whose value is obtained by a logical operation; when the value 
of the expression holds true, the actionQ(Y) is executed, or 
the conclusion Q(Y) is obtained. The rules for generating 
the timing of ship equipment maintenance according to the 
above representation are as follows:

Rule 1: IF curtime – sertime < charlife THEN repairtime = 
sertime + charlife ELSE repairtime = curtime

Rule 2: IF curtime – lastrepair < repairinterval THEN 
repairtime = lastrepair + repairinterval ELSE repairtime = 
curtime

Fig. 1.Repair level logic decision diagram
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In the above two rule definitions, curtime is the current 
date, sertime is the service date, charlife is the characteristic 
life, repairinterval is the repair interval, lastrepair is the last 
repair date, and repairtime is the repair date. The difference 
between the two rules is that Rule 1 determines the repair time 
for off-weight parts based on the characteristic life predicted 
by the Weibull distribution, whereas Rule 2 determines the 
repair time based on the regular maintenance interval of the 
ship. The rule inference process for the repair time of the ship 
equipment is shown in Fig. 2.
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Fig. 2. Decision diagram based on logical reasoning for repair time

By applying the generative rules to the system according to 
the logic reasoning approach presented in Fig. 2, it is possible 
to determine the repair timing for equipment and thus the 
repair timing of the whole ship. The process is as follows: first 
determine the status of the equipment according to its actual 
condition, then determine the repair level (i.e. equipment to be 
repaired) through FMEA and logical decision methods; next, 
determine whether the large-scale level repairs or small-scale 
emergency repairs should be carried out on the ship according 
to the repair level; if emergency repairs are needed, carry out 
crew-level repairs and replacement work directly without 
performing the repair time assessment; for equipment level 
repairs, the repair time is determined according to whether a 
scheduled maintenance strategy or a preventive maintenance 
strategy is used. The preventive maintenance strategy matches 
Rule 1, and the scheduled maintenance strategy matches Rule 
2, thus the repair time of the equipment can be obtained 
through logical reasoning. To determine the repair timing, 

the nearest equipment repair time to the current date should 
be selected as the repair timing class for the whole ship.

CASE STUDY

A ship consists of six systems: hull and outfitting, propulsion 
system, electrical system, auxiliary system, integrated platform 
management system, and combat system. Each system is 
made up of several critical components and sub-systems. 

Of these six systems, the hull 
and outfitting are important 
to the overall structure of the 
ship and dock access, while 
the electrical and propulsion 
systems are the ship’s source of 
electrical and kinetic energy, 
and together, all three systems 
are highly representative of 
the overall ship system. Due 
to the complexity of the ship’s 
systems, the bill of material 
(BOM) structure for ship 
maintenance can be divided 
into three layers: whole ship, 
system, and key components. 
Here, several key components 
are taken as the main research 
objects, without breaking 
them down into further sub-
components. In this case, the 
hull structure and outfitting 
system, the main switchboard 
of the electrical system, and 
diesel engine of the propulsion 

system were selected, and the results were used to develop a 
bottom-up inference process.

DETERMINATION OF LEVEL OF REPAIR NEED

The FMEA analysis method is described earlier in the 
paper. In this study, the method was used to analyse the 
repair information for a fin stabilizer failure provided by the 
repair shop, high elastic couplings, and diesel generator sets 
of a certain type of ship. The failure modes and effects were 
determined, and a risk score was assigned to each failure 
according to the severity, incidence, and detection evaluation 
criteria. Finally, the risk of failure score was calculated using 
the specific RPN value using Eq. (1). Multiple faults often 
occur in a single off-load component and the RPN for each 
fault may be different and may correspond to multiple repair 
demand levels. To solve this problem, the RPNs of multiple 
faults caused by an off-load component were compared, 
the maximum value was selected, and the maximum RPN 
was used to determine the repair demand level, as shown 
in Table 5.
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Table 5 shows that the repair demand level for the fin 
stabilizer is class III, the repair demand level for the high 
elastic couplings is class II, and the repair demand level for the 
diesel generator sets is level III, all of which are high-risk parts.

DETERMINATION OF CHARACTERISTIC LIFE

To determine the repair time of key parts, the first step is 
to carry out a failure prediction of the equipment according 
to the Weibull distribution model referred to above in the 
paper and determine the characteristic life of the equipment. 
The performance of the fin stabilizer is directly related to the 
ship’s manoeuvrability and safety. The historical failure times 
of 20 fin stabilizers from the same batch of types collected by 
the ship repair yard are presented in Table 6.

Tab. 6. Failure history of fin stabilizer

Serial number 1 2 3 4 5 6 7 8 9 10

Failure time [day] 173 175 177 183 187 191 196 198 202 205

Serial number 11 12 13 14 15 16 17 18 19 20

Failure time [day] 212 213 221 230 235 240 242 245 246 249

Before using the Weibull distribution model for fault 
prediction, a data fitting test must be carried out. The Weibull 
distribution model can only be applied to data with a good 
fit. The results of fitting tests performed on 20 fault data sets 
in MATLAB are shown in Fig. 3.

Tab. 5.Failure mode and effects analysis (FMEA) of key ship components

Equipment Affiliated 
System Failure Mode Cause Analysis S O D RPN Repair Need 

Level

Fin stabilizer Hull and 
outfitting

Press „Start”, fins do not work Faulty oil fill valve, fin drain 
valve 7 3 8 6.4

III
Fins do not automatically 
go into reduced cranking 

operation

Unlocked locking device, 
faulty wiring 6 4 9 6.2

Fins turned to one side Servo valve failure, 
potentiometer damage 5 3 7 5.0

High elastic 
couplings

Propulsion 
system

Rubber fracture Excessive cabin temperature 3 2 2 2.6

IIShaft breakage
Stress greater than permissible 

value for highly flexible 
coupling

4 1 1 2.8

High elastic damage Misalignment of shaft system 2 1 4 2.2

Diesel generator 
sets Electrical system

Low starting speed Poor contact, excessive gear 
wear 6 6 8 6.4

IIIStrange noise coming from 
front cover Excessive backlash 4 5 8 5.0

Low oil pressure Lack of oil, worn piston doors 4 4 7 4.6

Fig. 3. Goodness-of-fit test results for Weibull distribution

As seen in Fig. 3, the historical failure time data are 
uniformly distributed along a straight line with a slope greater 
than zero, indicating that the data distribution conforms to 
the Weibull distribution. Thus, the failure time of the fin 
stabilizer can be predicted using the Weibull distribution 
model. Prior to the failure prediction, parameter estimation 
must be performed using the greater likelihood estimation 
method presented above. Briefly, historical failure times were 
input into the MATLAB program and the non-linear system 
of equations (Eq. (7)) was solved using Newton’s iterative 
method to obtain b = 9.480 and θ = 222.422. The estimated 
values of b and θ were substituted into Eqs. (3) and (4) to 
obtain the failure probability density function and reliability 
function, as follows:
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Statistical data for the reliability, failure probability density, 
remaining life failure probability density, and cumulative 
probability of remaining life distribution related quantities 
versus running time were plotted in MATLAB, as shown 
in Fig. 4.

Fig. 4. Statistics related to Weibull distribution for fin stabilizer

Fig. 4(a) shows the variation of reliability of the fin stabilizer 
with operating time. Using the solve function in MATLAB 
to solve Eqs. (9) and (10), we can obtain that t = 222.414 
days, the reliability is 0.368 and the cumulative probability of 
failure is 0.632, i.e., the characteristic life is 222 days. Fig. 4(b) 
shows the variation of the probability density of failure with 
operating time for the fin stabilizer. It can be concluded that 
the probability density of failure is greatest at t = 222.414, i.e., 
the probability of equipment failure is the greatest after this 
point. Therefore, maintenance should be carried out before 
then, which also confirms the reasonableness of choosing the 
characteristic life to predict the equipment maintenance time. 
Fig. 4(c) and 4(d) show the probability density, cumulative 

distribution, and running time for the remaining life of the 
fin stabilizer after 70 days in service. The detailed analysis 
of these simple functional relationships is not provided here. 

Similarly, based on the historical failure time data for the 
high elastic couplings (421, 462, 485, 502, 531, 552, 571, 599, 
625, 650, 662, 683, 701, 715, 730, 733, 750, 772, 780, and 793 
days), it can be concluded that b = 6.925, θ= 682.116, and the 
characteristic life is 682 days. Based on the historical failure 
time data for the diesel generator sets (243, 249, 255, 260, 
262, 269, 275, 287, 290, 295, 305, 307, 310, 316, 320, 330, 331, 
335, 338, and 341 days), it can be derived that b= 11.192, θ= 
309.868, and the characteristic life is 309 days.

DETERMINATION OF THE 
LEVEL AND TIMING OF 
WHOLE SHIP REPAIRS

According to Table 5, the 
repair scope for a certain 
type of ship equipment can be 
obtained. There are 3 high-risk 
parts in the three systems: the 
fin stabilizer affects the hull 
and outfitting, the high elastic 
couplings of the high-risk part 
affect the electrical system, and 
the high-risk diesel generator 
sets affect the propulsion 
system. A logical decision 
analysis of the above scenario 
was carried out using the 
approach illustrated in Fig. 1, 
where the repair demand levels 
of all three key components 
are III, WW= ΣRNPK= 6.4 + 

6.2 + 5.0 +2.6 + 2.8 + 2.2 + 6.4 + 5.0 + 4.6 = 41.2, which easily 
yields a repair level for the ship, namely dock repair.

Once the need for dock repair has been identified, the logical 
decision diagram in Fig. 2 can be used to make deductive 
judgements. In the absence of special requirements to use 
a fixed repair interval, a preventive maintenance strategy is 
adopted, with each of the off-weight parts obeying Rule 1. 
By bringing the calculated characteristic life into Rule 1, the 
repair time of the faulty part can be determined according 
to the ship‘s service time and the current date. Finally, the 
timing of the whole ship repair is determined. The results 
are presented in Table 7.

Tab. 7. Determination of the timing and level of whole ship.

Name of equipment
Service 

start
time

Current date Repair 
interval

Characteristic 
life

Repair 
Demand Level

Equipment 
repair time

Production 
rule

Timing and 
level of the 
whole ship 

repair
Fin stabilizer 2021-7-1 2021-9-30 none 222 III 2022-2-7 Rule 1

2022-2-7
Dock repairHigh elastic coupling 2021-7-1 2021-9-30 none 682 II 2023-5-13 Rule 1

Diesel generator set 2021-7-1 2021-9-30 none 309 III 2022-5-5 Rule 1
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SYSTEM DEVELOPMENT

Based on the ship repair range generated using the technical 
state of the ship equipment and fault repair information, 
the repair level and repair timing decision process and ship 
equipment level repair decision system process are shown 
in Fig. 5.

Fault prediction 
based on Weibull 

distribution

maximum likelihood 
estimation

Rule1 Rule2

Logical decision 
diagrams

FMEA 
analysis

Fig. 5. Data fitting test process for Weibull distribution model

The business process of this system starts from analysing 
the factors that affect the ship-level repair and distinguishes 
the important parts and systems that affect the ship-level 
repair requirements. Then, the technical status information of 
key parts is collected, and the fault maintenance information 
and historical fault information of the equipment are screened 
out. By establishing the repair demand level evaluation 
criteria, the FMEA method is used to analyse the equipment 
fault maintenance information and determine the repair 
demand level and repair scope of the equipment. Finally, 
the repair level of the whole ship is determined by the logical 
decision method. Estimation of the shape parameter b and 
the scale parameter θ of the Weibull distribution is based on 
the historical failure time of the equipment using the greater 
likelihood estimation method to carry out the life prediction 
of the equipment and uses the calculated characteristic life 
as the result of the failure prediction. If there is no specified 
repair interval, the preventive maintenance strategy is 
adopted and the repair time of the equipment is determined by 
bringing the characteristic life into Rule 1 for rule inference; 
conversely, if the periodic maintenance strategy is adopted, 
the repair time of the equipment is determined by bringing 
the repair interval into Rule 2 for rule inference; finally, the 

repair time of the equipment is used to determine the repair 
timing of the whole ship and a report on the ship-level repair 
decisions is generated.

The system was developed in the Java programming 
language and MySQL was used to manage the database. 
The main technical frameworks used were SpringBoot, 

MyBatis-Plus, and VUE 
(all three are mainstream 
technical frameworks used 
to develop systems in the Java 
language). The system includes 
six functional modules: ship 
management, technical status 
information management, 
BOM repair management, 
repair level analysis, repair 
demand generation, and 
system management. Their 
pair level analysis interface is 
illustrated in Fig. 6.

The ship repair strategy was 
validated using a case study 
of the project management 
strategy of a ship-level 
maintenance project. Basic 
information about the ship, 
maintenance BOM structure, 
and technical status data and 
maintenance information 
of key parts were imported. 
According to the defined 
FMEA evaluation rules, 

the system automatically calculates the repair timing 
and repair level of the whole ship, and finally generates 
a report on the ship’s level repair requirements; finally, a 
ship-level maintenance needs report is generated. In this 
practical application, the system achieved the expected 
function and can provide powerful technical support for 
ship equipment level repair decisions and the management 
of ship maintenance projects.
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CONCLUSIONS

Based on existing research on repair levels and the 
characteristics of ship equipment maintenance, this paper 
proposed a new decision method for the analysis of the ship 
equipment repair level. The proposed ship equipment repair 
level decision process is based on preventive maintenance 
and can meet the actual repair and maintenance needs of 
ships better than traditional periodic maintenance strategies. 
In addition, the accuracy and feasibility of the model and 
algorithm were verified through case studies of rocker fins 
and highly flexible couplings, and the repair level and repair 
timing of the ship were derived.

However, there is still room for improvement in the 
proposed methods. For example, there are still some 
qualitative limitations in determining the level of equipment 
repair needed using FMEA. The next steps will be to continue 
exploring theoretical and practical methods for decision-
making on preventive maintenance that are suitable for 
ship-level repair. Preventive maintenance with condition 
monitoring and health management could be combined with 
artificial intelligence fault prediction algorithms to improve 
the real-time accuracy of ship equipment repair decisions.
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