PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discrete micro-scale cellular automata model for modelling phase transformation during heating of dual phase steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Development of the discrete two-dimensional cellular automata (CA) model for modelling phase transformation during heating of dual phase (DP) steels is the subject of the present work. The model is based on the solution of fundamental diffusion equation, which is associated with local equilibrium conditions, and takes into account growth of austenite during phase transformation driven by the grain boundary curvature. Solution of the diffusion equation is realized by the finite difference method (FDM), while further growth is controlled by the cellular automata transition rules. All the details of the developed cellular automata model are presented and discussed. Finally comparison between obtained results and experimental data is also addressed.
Rocznik
Strony
96--103
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Indian Institute of Technology, Kharagpur 721302, India
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive eindustry, Archives of Civiland Mechanical Engineering 8 (2) (2008) 103–117.
  • [2] D.Z. Li, N. M. Xiao, Y. J. Lan, C. W. Zheng, Y. Li, Growth modes of individual ferrite grains in the austenite to ferrite transformation of low carbon steels, Acta Materialia 55 (2007) 6234–6249.
  • [3] B.J. Yang, L. Chuzhoy, M. L. Johnson, Modelling of reaustenitization of hypoeutectoid steels with cellular automat on method, Computational Materials Science 41 (2007) 186–194.
  • [4] V. Marx, F. R. Reher, G. Gottstein, Simulation of primary recrystallization using a modified three-dimentional cellular automaton, Acta Materialia 47 (1999) 1219–1230.
  • [5] M. S. Salehi, S. Serajzadeh, Simulation of static recrystallization in non-isothermal annealing using a coupled cellular automata and finite element model, Computational Material Science 53 (1) (2012) 145–152.
  • [6] A. Jacot, M. Rappaz, A combined model for the description of austenitization, homogenization and grain growth in hypoeutectoid Fe–C steels during heating, Acta Materialia 47 (1999) 1645–1651.
  • [7] Y.J. Lan, D. Z. Li, Y. Y.Li, Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automat on method, Acta Materialia 52 (2004) 1721–1729.
  • [8] L. Sieradzki, L. Madej, A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modelling in polycrystalline materials, Computational Material Science 67 (2013) 156–173.
  • [9] W. Wajda, L. Madej, H. Paul, Application of crystal plasticity model for simulation of poly crystal line aluminium sample behavior during plain strain compression test, Archives of Metallurgy and Materials 58 (2013) 493–496.
  • [10] L. Madej, L. Rauch, C. Yang, Strain distribution analysis based on the digital material representation, Archives of Metallurgy and Materials 54 (2009) 499–507.
  • [11] M. Pietrzyk, L. Madej, L. Rauch, R. Gołąb, Multi scale modelling of microstructure evolution during laminar cooling of hot rolled D P steel, Archives of Civil and Mechanical Engineering 10 (2010)57–67.
  • [12] M. Ferry, D. Muljono, D.P. Dunne, Recrystallization kinetics of low and ultra-low carbon steels during high-rate annealing, ISIJ International 41 (2001) 1053–1060.
  • [13] R.O Rocha, T. M. F. Melo, E.V. Pereloma, D.B. Santos, Microstructural evolution at the initial stages of continuous annealing of cold rolled dual-phase steel, Materials Science and Engineering A 391A (2005) 296–304.
  • [14] A. Pichler,G. Hribernig, E. Tragl, R. Angerer, K. Radlmayr, J. Szinyur, S. Traint, E. Werner, P. Stiaszny, Aspects of the production of dual phase and multiphase steel strip, in: Proceedings of the 41 st MWSP Conference, Baltimore, 1999, pp. 37–60.
  • [15] A. Pichler, S. Traint, G. Arnoldner, E. Werner, R. Pippan, P. Stiaszny, Phase transformation during annealing of a cold- rolled dual phase steel grade, in: Proceedings of the 42nd MWSP Conference, Toronto, 2000, pp. 573–593.
  • [16] A. Pichler, S. Traint, T. Habesberger, P. Stiaszny, E.A. Werner, Processing of thin sheet multiphase steel grade, Steel Research International 78 (2007) 216–223.
  • [17] M. Pernach, M. Pietrzyk, Numerical solution of the diffusion equation with moving boundary applied to modeling of the austenite–ferrite phase transformation, Computational Materials Science 44 (2008) 783–791.
  • [18] G. Molinder, Aquantitative study of the formation of austenite and the solution of cementite at different austenitizing temperatures for a 1.27% carbonsteel, Acta Metallurgica 4 (6) (1956) 565–571.
  • [19] C.I. Gracia, A.J. Deardo, Formation of austenite in 1.5pct Mn steel, Metallurgical Transactions A12 A (1981)521–530.
  • [20] G.R. Speich, V.A. Demarest, R.L. Miller, Formation of austenite during intercritical annealing of dual-phase steels, Metallurgical Transactions A12 A (1981) 1419–1428.
  • [21] D.P. Datta, A.M. Gokhale, Austenitization kinetics of pearlite and ferrite aggregates in a low-carbon steel containing 0.15 wt% carbon, Metallurgical Transactions A12 A (1981) 443–450.
  • [22] R.C. Dykhuizen, C.V. Robino, G.A. Knorovsky, A method for extracting phase change kinetics from dilatation for multistep transformations: austenitization of a low carbon steel, Metallurgical and Materials Transactions B30 B (1999) 107–117.
  • [23] E. Schmidt, Y. Wang, S. Sridhar, A study of non isothermal austenite formation and decomposition in Fe–C–Mn alloys, Metallurgical and Materials Transactions A37 A (2006) 1799–1810.
  • [24] E.D. Schmidt, E.B. Damm, S. Sridhar, A study of diffusion-and interface-controlled migration of the austenite/ferrite front during austenitization of a case-hardenable alloy steel, Metallurgical and Materials Transactions A38 A( (2007) 244–260.
  • [25] V.I. Savran, Austenite formation in C–Mn steel (Ph.D. thesis), Delft University of Technology, 2009.
  • [26] L. Madej, L. Sieradzki, M. Sitko, K. Perzynski, K. Radwanski, R. Kuziak, Multiscale cellular automata and finite element based model for cold deformation and annealing of a ferritic–pearlitic microstructure, Computational Materials Science 77 (2013) 172–181.
  • [27] A. Roosz, Z. Gacsi, E. G. Fuchs, Isothermal formation of austenite in eutectoid plain carbon steel, Acta Metallurgica 31 (4) (1983) 509–517.
  • [28] G. Karacs, A Roosz, A Two-Dimensional, Cellular automaton simulation for the description of the austenitization in hypo eutectoid and eutectoid Fe–C steels, Materials Science Forum 589 (2008) 317–332.
  • [29] Y.J. Lan, D.Z. Li, Y. Y. Li, A mesoscale cellular automaton model for curvature-driven grain growth, Metallurgical and Materials Transactions B37 B (2006) 119–129.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72034299-0151-49c4-b9c8-d222a49836eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.