PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geometrical model of lemon fruit

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Geometryczny model owoców cytryn
Języki publikacji
EN
Abstrakty
EN
A proposal of a mathematical method of modelling of the lemon shape with Bézier's curves was presented. Lisbon, Verna, Genoa lemon cultivars were selected for verification of the modelling method. The lemon contour, which is its meridian, was described with three smoothly combined Bézier's curves. Pictures taken in 10 locations changing every 36o were the basis for description of lemon contours. Bézier's curves, which approximate meridians located on the surface of lemons, are their 3D models. The presented method may be applied for mathematical modelling of the lemon shape.
PL
Przedstawiono propozycję metody matematycznego modelowania kształtu cytryn z wykorzystaniem krzywych Béziera. Do weryfikacji metody modelowania wybrano cytryny odmian Lisbon, Verna, Genoa. Kontur cytryny, który jest jej południkiem, opisano trzema gładko połączonymi krzywymi Béziera. Podstawą do opisu konturów cytryn są ich fotografie wykonane w 10 zmieniających się co 36o położeniach. Krzywe Béziera aproksymujące południki leżące na powierzchni cytryn są ich modelami 3D. Przedstawiona metoda może być stosowana do matematycznego modelowania kształtu cytryn.
Rocznik
Strony
101--110
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Institute of Production Organization and Engineering, Warsaw University of Life Science
Bibliografia
  • Alchanatis, V., Peleg, K., Ziv, M. (1993). Classification of tissue culture segments by color machine vision. JAER, 55, 299-311.
  • Al-Juhaimi, F.Y., Ghafoor, K. (2013). Bioactive compounds, antioxidant and physico-chemical properties of juice from lemon, mandarin and orange fruits cultivated in Saudi Arabia. Pakistan Journal Botany, 45(4), 1193-1196.
  • Anders, A., Markowski, P., Kaliniewicz, Z. (2014). Badanie właściwości geometrycznych i fizycznych owoców wybranych odmian gruszy na podstawie modeli numerycznych uzyskanych za pomocą skanera 3D. Zeszyty Problemowe Postępów Nauk Rolniczych, 577, 3-12.
  • Baradaran Motie, J., Miraei Ashtiani, S. H., Abbaspour-Fard, M. H., Emadi, B. (2014). Modeling physical properties of lemon fruits for separation and classification. International Food Research Journal, 21(5), 1901-1909.
  • Bozokalfa, M. K., Kilic, M. (2010). Mathematical modeling in the estimation of pepper (Capsicum annum L.) fruit volume. Chilean Journal of Agricultural Research, 70(4), 626-632.
  • Burt, S.A. (2004). Essential oils: Their antibacterial properties and potential applications in foods: Av review. International Joutnal of Food Microbiology, 94, 223-253.
  • Ghulam, M. (2015). Date Fruites Classification Using Texture Descriptors and Shape-Size Features. Engineering Applications of Artificial Intelligence, 37, 361-367.
  • Growe, T. G., Delwiche, M. J. (1996). A system for fruit defect detection in real-time. AGENG, 96F-023.
  • Guyer, D.E., Miles, G. E., Gaultney, L. D., Schereiber, M. M. (1993). Application of machine vision to shape analysis in leaf and plant identification, TASAE, 36(1), 163-171.
  • Ho, Q. (2011). A Three-Dimensional Multiscale Model for Gas Exchange in Fruit. Plant Physiology, 155(3), 1158-1168.
  • Iqbal, S., Gopal, A., Sarma, A. (2011). Volume Estimation of Apple Fruits Using Image Processing. 2011 International Conference on Image Information Processing, Himachal Pradesh, 1-6.
  • Kakadiya, D., Shah, R., Shah, N., Kachariya, C., Patel, M., Sukhwani, K. (2015). Shape Extraction Methods for Fruits: Technical Review. International Journal of Computer Applications, 111(1), 43-48.
  • Khojastehnazhand, M., Omid, M., Tabatabaeefar, A. (2010). Development of a lemon sorting system based on color and size. African Journal of Plant Science, 4(4), 122-127.
  • Lalitha, K., Muthulakshmi, K., Vinothini, A. (2015). Proficient acquaintance based system for citrus leaf disease recognition and categorization. International Journal of Computer Science and Information Technologies, 6(3), 2519-2524.
  • Lino, A.C.L., Sanches, J., Fabbro, I.M.D. (2008). Image processing techniques for lemons and tomatoes classification. Bragantia, Campinas, 67(3), 785-789.
  • Mebatsion, H.K., Boudon, F., Godin, C., Pradal, C., Génard, M., Goz-Bac, C., Bertin, N. (2011). A novel profile based model 415 for virtual representation of quasi-symmetric plant organs. Computers and Electronics in Agriculture, 75(1), 113-124.
  • Miller, B. K., Delwiche, M. J. (1991). Peach defect detection with machine vision. TASAE, 34(6), 2588-2597.
  • Mohanapriya, M., Ramaswamy, L., Rajendran, R. (2013). Health and medicinal properties of lemon (Citrus limonum). International Journal Of Ayurvedic And Herbal Medicine, 3(1), 1095-1100.
  • Moltó, E., Aleixos, N., Ruiz, L. A., Vázquez, J., Juste, F. (1996). An artificial vision system for fruit quality assessment. AGENG 96, Madrid, 96F-078.
  • Moreda, G.P., Muñoz, M.A., Ruiz-Altisent, M., Perdigones, A. (2012). Shape determination of horticultural produce using two-dimensional computer vision-A review. Journal of Food Engineering, 108(2), 245-261.
  • Ortuño, A.A., Baidez, P., Gomez, M.C., Arcas, I., Porras, A.G., Del Rio, J.A. (2006). Citrus paradise and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicilliumdigitatum. Food Chemistry, 98(2), 351-358.
  • Rakun, J. (2012). Detecting Natural Objects by Means of 2D and 3D Shape Analysis. Optija, Croatia, 345-354.
  • Rondeau-Mouroa, C., Bouchetb, B., Pontoirea, B., Roberta, P., Mazoyerc, J., Bule´ona, A. (2003). Structural features and potential texturising properties of lemon and maize cellulose microfibrils. Carbohydrate Polymers, 53, 241-252.
  • Ruiz, L. A., Moltó, E., Juste, F., Aleixos, N. (1995). Aplicación de métodosópticos para la inspecciónautomática de productoshortofrutícolas, VI Congreso de la Sociedad Española de Ciencias Hortícolas, Barcelona.
  • Sarkar, N., Wolfe, R.R. (1985). Feature extraction techniques for sorting tomatoes by computer vision. TASAE, 28(3), 970-974.
  • Satya Priya, N., Nivetha, E., Khilar, R. (2016). Efficient Knowledge Based System to Detect Diseases in Lemon Leaf. Imperial Journal of Interdisciplinary Research (IJIR), 2(5), 275-280.
  • Seng, W.C., Mirisaee, S.H. (2009). A new method for fruits recognition system. Conference: Electrical Engineering and Informatics. ICEEI '09. International Conference on, 01, 130-134.
  • Swapnil, S.P., Dale, M.P. (2016). Computer vision based fruit detection and sorting system. Special Issue on International Journal of Electrical, Electronics and Computer Systems, ISSN (Print): 2347-2820 V-4 I-2. For 3rd National Conference on Advancements in Communication, Computing and Electronics Technology [ACCET-2016].
  • Taheri-Garavand, A., Nassiri, A. (2010). Study on some morphological and physical Characteristics of sweet lemon used in mass models. International Journal of Environmental Sciences, 1(4), 580-590.
  • Tao, Y., Morrow, C. T., Heinemann, P. H., Sommer, J. H. (1990). Automated machine vision inspection of potatoes. American Society of Agricultural Engineers, 90-3531, 23-27.
  • Uyar, R., Erdoğdu, F. (2009). Potential use of 3-dimensional scanners for food process modeling. Journal of Food Engineering, 93, 337-343.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72031d99-e9d6-4dfb-bd36-dbd39e3f5025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.